• Title/Summary/Keyword: Thermal changes

Search Result 1,963, Processing Time 0.029 seconds

An Application of Satellite Image Analysis to Visualize the Effects of Urban Green Areas on Temperature (위성영상을 이용한 도시녹지의 기온저감 효과 분석)

  • Yoon, Min-Ho;Ahn, Tong-Mahn
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • Urbanization brings several changes to the natural environment. Its consequences can have a direct effect on climatic features, as in the Urban Heat Island Effect. One factor that directly affects the urban climate is the green area. In urban areas, vegetation is suppressed in order to accommodate manmade buildings and streets. In this paper we analyze the effect of green areas on the urban temperature in Seoul. The period selected for analysis was July 30th, 2007. The ground temperature was measured using Landsat TM satellite imagery. Land cover was calculated in terms of city area, water, bare soil, wet lands, grass lands, forest, and farmland. We extracted the surface temperature using the Linear Regression Model. Then, we did a regression analysis between air temperature at the Automatic Weather Station and surface temperature. Finally, we calculated the temperature decrease area and the population benefits from the green areas. Consequently, we determined that a green area with a radius of 500m will have a temperature reduction area of $67.33km^2$, in terms of urban area. This is 11.12% of Seoul's metropolitan area and 18.09% of the Seoul urban area. We can assume that about 1,892,000 people would be affected by this green area's temperature reduction. Also, we randomly chose 50 places to analysis a cross section of temperature reduction area. Temperature differences between the boundaries of green and urban areas are an average of $0.78^{\circ}C$. The highest temperature difference is $1.7^{\circ}C$, and the lowest temperature difference is $0.3^{\circ}C$. This study has demonstrated that we can understand how green areas truly affect air temperature.

Effects of Polyimide Passivation Layers and polyvinylalcohol Passivation Layers for Organic Thin-Film Transistors(OTFTs) (폴리이미드 패시베이션과 폴리비닐알콜 패시베이션 레이어 성막이 고성능 유기박막 트렌지스터에 주는 영향)

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Hwang, Sun-Wook;Kim, Young-Kwan
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.195-198
    • /
    • 2008
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing. In order to form polymeric film as a passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing. In order to investigate by compared with different passivation layer, the other OTFTs is fabricated to passivation by Polyvinylalcohol using spincoating. We can see that two different ways of passivation layer affect electric characteristic of OTFTs. The initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.24cm^2/Vs$, -3V, and $10^6$, respectively. Then after polyimide passivation layer, field effect mobility change from $0.24cm^2/Vs$ to $0.26cm^2/Vs$, threshold voltage from -3V to 1V and on-off current ratio from $10^6$ to $10^6$, respectively. In the case of polyvinylalcohol passivation, the initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.13cm^2/Vs$, 0V, and $10^6$, respectively. Then after polyvinylalcohol passivation layer, field effect mobility changes from $0.13cm^2/Vs$ to $0.13cm^2/Vs$, threshold voltage from 0V to 2V, and on-off current ratio from $10^6$ to $10^5$, respectively.

Changes of Soil Properties through the Remediation Processes and Techniques for the Restoration of Remediated Soils (오염 토양 정화공정에 의한 토양의 특성 변화 및 정화토의 회복기술)

  • Lee, Sang-Woo;Lee, Woo-Chun;Lee, Sang-Hun;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.441-477
    • /
    • 2020
  • There have been raised other environmental issues related to remediated soils piled up in numerous carry-out processing facilities because a considerable quantity of them have been produced every year, but most of them have not been relevantly reused or recycled. Thus, this article reports the trend of researches on the development of techniques to restore the quality of remediated soils to activate their reuse and recycling. Firstly, the tendency of change in soil properties through remediation processes was looked over, and then the degradation of soil quality was characterized according to the type of remediation processes. Besides, the direction of policy to promote the reuse and recycling of remediated soils was introduced, and finally, the future works needed were suggested. This article was prepared based on the results of the survey of domestic and foreign literature. A number of literature were reviewed to scrutinize the change of soil properties due to remediation processes and diverse techniques for the amendment and restoration of remediated soils. Furthermore, the policies related to the reuse and recycling of remediated soils were arranged with the reference of the first and second versions of the Soil Conservation Master Plan of Korea. The literature survey focused on three kinds of remediation technologies, such as land farming, soil washing, and thermal desorption, which were most frequently used so far in Korea. The results indicate that the tendency of change in soil properties was significantly different depending on the type of remediation processes applied, and the degradation characteristics of soil quality were also totally different between them. The soil amendment and restoration can be categorized as three techniques depending on the type of substances used, such as inorganic, organic, and biological ones. Diverse individual materials have been used, and the soil properties improved or enhanced were dependent on the type of specific materials utilized. However, few studies on the restoration of soil qualities degraded during the remediation processes have not been carried out so far. The second Soil Conservation Master Plan states the quality certification and target management system of remediated soils, and it is expected that their reuse and recycling will be facilitated hereafter. With the consideration of the type of remediation processes implemented and public utility, the restoration technologies of remediated soils should be developed for the vitalization of their reuse and recycling. Besides, practical and specific measures should be taken to support the policy specified in the second Soil Conservation Master Plan and to promote reuse/recycling of remediated soils.

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.

Effect of Roasting Condition on the Physicochemical Properties of Rice Flour and the Quality Characteristics of Tarakjuk (볶음조건에 따른 멥쌀가루의 이화학적 특성 및 타락죽의 품질특성)

  • Lee, Gui-Chu;Kim, So-Jung;Koh, Bong-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.905-913
    • /
    • 2003
  • The physicochemical properties of rice flour roasted at various temperatures and times were analyzed, and the quality characteristics of tarakjuk made from these roasted rice flours were investigated. As roasting temperature and time increased, rice flour showed decreasing moisture, protein content, and glucose the major reducing sugar of rice flour. Total amino acid content did not show any significant changes, but the amount of free amino acids and individual amino acids, such as lysine, tryptophane, and tyrosine, decreased. A decrease in L value and increases in a and b values from both roasted rice flour and tarakjuk was observed. Reduced crystallinity and gelatinization temperatures of roasted rice flour were investigated with X-ray diffractogram and DSC, respectively. The thermal transitions between $100.6{\sim}127.6^{\circ}C$ of tarakjuk by DSC are considered to be due to the melting of amylose-lipid complex. As the roasting temperature and time of rice flours increased, tarakjuk showed lower viscosity and higher spreadability. Sensory characteristics, such as nutty flavor, color intensity, and gritty texture increased significantly. Tarakjuk made from rice flour roasted at $185^{\circ}C$ for 25min showed the highest score on overall preference. From the above results, roasted rice flour produced more preferable tarakjuk than nonroasted flour in terms of sensory quality.

A study on urban heat islands over the metropolitan Seoul area, using satellite images (원격탐사기법에 의한 도시열섬 연구)

  • ;Lee, Hyoun-Young
    • Journal of the Korean Geographical Society
    • /
    • v.40
    • /
    • pp.1-13
    • /
    • 1989
  • The brightness temperature from NOAA AVHRR CH 4 images was examined for the metropolitan Seoul area, the capital city of Korea, to detect the characteristics of the urban heat island for this study. Surface data from 21 meteorological stations were compared with the brightness temperatures Through computer enhancement techniques, more than 20 heat islands could be recognized in South Korea, with 1 km spatii resolution at a scale of 1: 200, 00O(Fig. 3, 4 and 6). The result of the analysis of AVHRR CH 4 images over the metropolitan Seoul area can be summerized as follows (1) The pattern of brightness temperature distribution in the metropolitan Seoul area shows a relatively strong temperature contrast between urban and rural areas. There is some indication of the warm brightness temperature zone characterrizing built-up area including CBD, densely populated residential district and industrial zone. The cool brightness temperature is asociaed with the major hills such as Bukhan-san, Nam-san and Kwanak-san or with the major water bodies such as Han-gang, and reservoirs. Although the influence of the river and reservoirs is obvious in the brightness temperauture, that of small-scaled land use features such as parks in the cities is not features such as parks in the cities is not apperent. (2) One can find a linerar relationshop between the brightenss temperature and air temperature for 10 major cities, where the difference between two variables is larger in big cities. Though the coefficient value is 0.82, one can estimate that factors of the heat islands can not be explained only by the size of the cities. The magnitude of the horizontal brightness temperature differences between urban and rural area is found to be greater than that of horizontal air temperature difference in Korea. (3) Also one can find the high heat island intensity in some smaller cities such as Changwon(won(Tu-r=9.0$^{\circ}$C) and Po-hang(Tu-r==7.1$^{\circ}$~)T. he industrial location quotient of Chang-won is the second in the country and Po-hang the third. (4) A comparision of the enhanced thermal infrared imageries in 1986 and 1989, with the map at a scale of 1:200, 000 for the meotropolitan Seoul area showes the extent of possible urbanization changes. In the last three years, the heat islands have been extended in area. zone characterrizing built-up area including (5) Although the overall data base is small, the data in Fig. 3 suggest that brightness tempeautre could ge utilized for the study on the heat island characteristics. Satellite observations are required to study and monitor the impact of urban heat island on the climate and environment on global scale. This type of remote sensing provides a meams of monitoring the growth of urban and suburban aeas and its impact on the environment.

  • PDF

Design of Thermo-optic Switch with Low Power Consumption by Electrode Optimization (전극 구조의 최적화를 통한 저전력 열광학 스위치 설계)

  • Choi, Chul-Hyun;Kong, Chang-Kyeng;Lee, Min-Woo;Sung, Jun-Ho;Lee, Seung-Gol;Park, Se-Geun;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.266-271
    • /
    • 2009
  • We designed a thermo-optic switch based on a directional coupler with not only a high extinction ratio but also significantly low power consumption. The switch operates by using the thermo-optic effect of the polymer which the refractive index changes by heating the electrode. If the electrode is not powered (OFF), the input light will be coupled completely to the other waveguide. When the electrode is powered at a certain level (ON), input light launched into the input waveguide will remain in that waveguide due to the lower index adjusted in the other waveguide. The switch based on the directional coupler was designed using the generalized extinction ratio curve and the lateral shift of the input waveguide. The coupling length is 1,610 ${\mu}m$ and the extinction ratios are -28 and -30 dB for ON and OFF states, respectively. The electrode structures were optimized by thermal analysis. The transported heat into the waveguide is increased, as the electrode width (w) is increased and the center distance between the electrode and the waveguide (d) is decreased. Also, because the heat generated in the electrode affects the other waveguide, the temperature difference between two waveguides is varied as the given w and d. There are specific conditions which have the maximum of the temperature difference. That of the temperature difference is increased as the width and the temperature of the electrode are increased. Especially, when the switch is designed using the condition with the maximum of the temperature difference for switching, the temperature of the electrode can be decreased. We expect this condition will be the novel method for the reduction of the power consumption in a thermo-optic switch.

A Study on Air Temperature Reduction Effect and the Functional Improvement of Street Green Areas in Seoul, Korea (서울 도심 가로수 및 가로녹지의 기온 저감 효과와 기능 향상 연구)

  • Jung, Hee-Eun;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.37-49
    • /
    • 2015
  • The goal of this research is to examine air temperature changes according to tree type, plantation type, roadside green area structure, and green volume of street green area within a city. The plantation type that could be analyzed for comparison by tree type with over 3 species was 1 rows of tree+shrubs. The results of analysis of average air temperature difference between pedestrian and car streets vis-a-vis 1 row of tree+shrub in high air temperature areas were: Pinus densiflora, $1.35^{\circ}C$; Zelkova serrata, $1.84^{\circ}C$; Ginkgo biloba, $2.00^{\circ}C$; Platanus occidentalis, $2.57^{\circ}C$. This standard large wide canopy species was analyzed by the roadside to provide shade to have a significant impact on air temperature reduction. In terms of analysis of the relationship between plantation type of roadside trees and air temperature, the average air temperature difference for 1 row of tree type was $1.80^{\circ}C$; for 2 rows of trees it was $2.15^{\circ}C$. In terms of analysis of the relationship between the roadside green area structure and air temperature, for tree type, average air temperature $1.94^{\circ}C$: for tree+shrub type, average air temperature $2.49^{\circ}C$; for tree+mid-size tree+shrub type, average air temperature $2.57^{\circ}C$. That is, air temperature reduction was more effective in a multi-layer structure than a single layer structure. In the relationship analysis of green volume and air temperature reduction, the air temperature reduction effect was enlarged as there was a large amount of green volume. There was a relationship with the green volume of the road, the size of the tree and number of tree layers and a multi-layer structured form of planting. The canopy volume was large and there were a great number of rows of the tree layer and the plantation type of multi-layer structure, which is what is meant through a relationship with the green volume along the roadside. Green composition standards for air temperature reduction effects and functional improvement were proposed based on the result. For a pedestrian street width of 3m or less in the field being ideal, deciduous broadleaf trees in which the canopy volume is small and the structure of the tree+shrub type through the greatest 1m green bend were proposed. For a pedestrian street width of over 3m, deciduous broadleaf trees in which the canopy volume is large and is multi-layer planted with green bend over 1m, tree+mid-size tree+shrub type was proposed.

Studies on the Volatile Flavor Compounds of Sesame Oils with Roasting Temperature (볶음온도에 따른 참기름의 휘발성향기성분 변화)

  • Kim, Hyeon-Wee;Park, Ki-Moon;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.238-245
    • /
    • 2000
  • This study was investigated to compare the changes of flavors in sesame oil with roasting temperature $(110^{\circ}C{\sim}230^{\circ}C)$. In the results of analyzing the volatile flavor compounds of sesame oil with GC and GC/MS, 26 pyrazines, 11 pyridines, 9 thiazoles, 6 furans, 8 pyrroles, 5 phenols, 8 aldehydes, 8 hydrocarbons, 7 alcohols, 2 indoles, 3 ketones, 10 acids, 4 nitriles, 7 esters, and 5 others were isolated, identified, and quantified. The total amount of flavor compounds was increased with roasting temperature. Detected flavors could be devided into top(peak No. $1{\sim}91$), middle$(92{\sim}197)$ and last note$(198{\sim}224)$ by rentention time. The top notes(initial content 19.87 ppm) which contain pyrazines and provide representative roasted flavors were increased significantly with roasting temperature. Initial content of middle note(17.72 ppm) was increased to 36.71 ppm at $170^{\circ}C$, to 95.61 ppm at $220^{\circ}C$, and to 138.62 ppm at $230^{\circ}C$. Last note was almost unchanged up to $170^{\circ}C$ and increased at $190^{\circ}C$, whereas it indicated a tendency to decrease at $230^{\circ}C$. Pyrazines such as methylpyrazine, 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine which indicate the major components among volatile flavors were increased slightly up to $150^{\circ}C$ and revealed the higher increase than any other components above $170^{\circ}C$. This tendency was also similar to pyridines, thiazoles, and furans. Most of these compounds are assumed to be developed by thermochemical reactions of sesame components by roasting above $170^{\circ}C$. It seemed that a lot of increase in phenols above $210^{\circ}C$ resulted from the production of guaiacol. Acids were almost unchanged up to $190^{\circ}C$, increased at $210^{\circ}C$, and then decreased above $220^{\circ}C$. It seemed to be resulted from pyrolysis of free fatty acids formed from thermal oxidation of oil.

  • PDF

Current Statues of Phenomics and its Application for Crop Improvement: Imaging Systems for High-throughput Screening (작물육종 효율 극대화를 위한 피노믹스(phenomics) 연구동향: 화상기술을 이용한 식물 표현형 분석을 중심으로)

  • Lee, Seong-Kon;Kwon, Tack-Ryoun;Suh, Eun-Jung;Bae, Shin-Chul
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.233-240
    • /
    • 2011
  • Food security has been a main global issue due to climate changes and growing world population expected to 9 billion by 2050. While biodiversity is becoming more highlight, breeders are confronting shortage of various genetic materials needed for new variety to tackle food shortage challenge. Though biotechnology is still under debate on potential risk to human and environment, it is considered as one of alternative tools to address food supply issue for its potential to create a number of variations in genetic resource. The new technology, phenomics, is developing to improve efficiency of crop improvement. Phenomics is concerned with the measurement of phenomes which are the physical, morphological, physiological and/or biochemical traits of organisms as they change in response to genetic mutation and environmental influences. It can be served to provide better understanding of phenotypes at whole plant. For last decades, high-throughput screening (HTS) systems have been developed to measure phenomes, rapidly and quantitatively. Imaging technology such as thermal and chlorophyll fluorescence imaging systems is an area of HTS which has been used in agriculture. In this article, we review the current statues of high-throughput screening system in phenomics and its application for crop improvement.