• 제목/요약/키워드: Thermal chamber

검색결과 718건 처리시간 0.028초

디젤노즐의 분무 거동에 관한 연구 (A Study on Spray Distribution of Diesel Nozzles)

  • 송규근;오영택;안진근;김강출
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.120-127
    • /
    • 1997
  • A diesel engine is one of the major prime movers owing to its high thermal efficiency. But due to the recent attention for the environmental pollution, the emissions of diesel engine became a important problem. So it is needed to understand the characteristics of diesel spray injected into a combustion chamber. Because the diesel combustion is strongly controlled by a fuel spray injected into a combustion chamber. This study provides the informations for the diesel spray with the atmospere condition in combustion chamber by PMAS. As the result, the spray tip penetration and angle is increased with the increase of spray pressure and nozzle diameter. And the comparisions between the measured outline of the free-spray and the calculated model have been conducted and obtained the resonable results.

  • PDF

돌출높이와 초기온도 변화에 따른 연소실 벽면에서의 열유속에 관한 연구 (A Study of Heat Flux According to the Initial Temperature of Combustion Chamber and Blight of Probe in a Constant Volume Combustion Chamber)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1055-1062
    • /
    • 2004
  • As for the Production of internal combustion engines there has been further movement toward development of high Performance engines with improved fuel efficiency as well as a lightweight and a small size. These tendencies help to solve the problems in engines for example, such as thermal load. abnormal combustion and so on. In order to investigate these Problems, a thin film-type probe for measuring instantaneous temperature has been suggested. A method for manufacturing such a probe was established in this study The instantaneous surface temperature of a constant volume combustion chamber was measured by using this probe and the heat flux was obtained through Fourier analysis In order to thoroughly understand the characteristics of combustion. authors measured wall temperature of combustion chamber and calculated heat flux through a cylinder wall while varying the protrusion height of probe. For these Purposes, the instantaneous surface temperature probe was developed. thereby making possible the analysis of instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

COMPARISON OF THE COMBUSTION CHARACTERISTICS BETWEEN S.I. ENGINE AND R.I. ENGINE

  • Chung, S.S.;Ha, J.Y.;Park, J.S.;Kim, K.J.;Yeom, J.K.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.19-25
    • /
    • 2007
  • This experimental study was carried out to obtain both low emissions and high thermal efficiency by rapid bulk combustion. Two kinds of experiments were conducted to obtain fundamental data on the operation of a RI engine by a radical ignition method. First, the basic experiments were conducted to confirm rapid bulk combustion by using a radical ignition method in a constant volume chamber (CVC). In this experiment, the combustion velocity was much higher than that of a conventional method. Next, to investigate the desirable condition of engine operation using radical ignition, an applied experiment was conducted in an actual engine based on the basic experiment results obtained from CVC condition. A sub-chamber-type diesel engine was reconstructed using a SPI type engine with controlled injection duration and spark timing, and finally, converted to a RI engine. In this study, the operation characteristics of the RI engine were examined according to the sub-chamber's specifications such as the sub-chamber volume and the diameter and number of passage holes. These experimental results showed that the RI engine operated successfully and was affected by the ratio of the passage hole area to the sub-chamber volume.

막냉각 모형을 이용한 액체로켓엔진 연소기의 열해석 (A Thermal Analysis of Liquid Rocket Combustors using a Modelling of Film Cooling Performance)

  • 김홍집;조원국;문윤완
    • 한국추진공학회지
    • /
    • 제10권4호
    • /
    • pp.85-92
    • /
    • 2006
  • 액체로켓엔진의 막냉각 성능 예측을 위한 설계 프로그램을 개발하였다. 저혼합비 가스층이 가지는 열차단 효과를 CFD를 적용하여 해석하였다. CFD 해석 결과에 기반한 1차원 막냉각 모델을 기존의 재생냉각 프로그램에 적용하였다. 축소형 calorimetric 연소기와 실물형 연소실의 열유속 시험 데이터비교를 통하여, 비록 과다예측 특성을 보이기는 하지만 만족할만한 결과를 얻었다. 이로서 막냉각이 로켓엔진의 노즐목의 열하중 감소에 효과적임이 확인되었다.

정지궤도 위성의 열해석 모델 보정 (THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE)

  • 전형열;김정훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.230-235
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very law temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual unit were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

  • PDF

지구 정지궤도 위성의 열해석 모델 보정 (THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE)

  • 전형열;김정훈
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.59-65
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very low temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual units were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

고체로켓 추진기관용 연소관단열재의 내열성능평가를 위한 시험장치 개발 (A Development of Test Equipment for Thermal Protection Performance on Insulator used in Solid Rocket Motor)

  • 강윤구;윤덕진;김수영;이종성;권태하
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.543-546
    • /
    • 2017
  • 고체로켓 추진기관의 연소관 내부에 사용되는 연소관단열재의 열반응 특성을 평가하기 위한 모사시험장치를 개발하였다. 연소실 압력 2,500 psi, 연소시간 40 s까지 시험을 할 수 있으며, 삭마가 일어나는 조건에 대해 재료의 열반응 특성을 확인할 수 있고, 여러 시편을 동시에 상대 비교할 수 있다. 시험 장치의 안전성을 확인하기 위하여 연소실 유효평균압력 878 psi, 유효연소시간 10.7 s, 연소가스속도 100 m/s 조건에서 각기 다른 시편 4 종을 동시에 장착하여 시험을 수행하였으며, 열반응 특성 분석에 필요한 기본 데이터들, 즉 연소실의 압력-시간 선도, 재료 내부에서의 온도-시간 선도, 재료의 열파괴두께를 획득하였다.

  • PDF

Application of a Turbojet Engine for Fire Extinguishing

  • Slitenko, A.F.;Kim, SooYong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.62-69
    • /
    • 2000
  • Present study deals with performance analysis of an inert gas generator (IGG) which can be used as effective means to suppress fire. The IGG uses a turbo-jet engine to generate inert gas for fire extinguishing. It is generally known that a less degree of oxygen content in the product of combustion will increase the effectiveness of fire extinguishing. An inert gas generator system with water injection has advantages of suffocating and cooling effects that are very important factors for fire extinguishing. Some aspects of influencing parameters, such as, air excess coefficient, compressor pressure ratio, air temperature before combustion chamber, gas temperature after combustion chamber, mass flow rate of water injection etc. on the performance of IGG system are investigated.

  • PDF

폐기물 층 연소와 노내 유동 해석 (Combined Bed Combustion and Gas Flow Simulation for a Grate Type Incinerator)

  • 류창국;신동훈;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.67-75
    • /
    • 2000
  • Computational fluid dynamics(CFD) analysis of the thermal flow in a municipal solid waste(MSW) incinerator combustion chamber provides crucial insight on the incinerator performance. However, the combustion of the waste bed is typically treated as an arbitrarily selected profile of combustion gas. A strategy for simultaneous simulation of the waste bed combustion and the thermal flow fields in the furnace chamber was introduced to substitute the simple inlet condition. A waste bed combustion model was constructed to predict the progress of combustion in the bed and corresponding generation of the gas phase species, which assumes the moving bed as a packed bed of homogeneous fuel particles. When coupled with CFD, it provides boundary conditions such as gas temperature and species distribution over the grate, and receives radiative heat flux from CFD. The combined simulation successfully predicted the physical processes of the waste bed combustion and its interaction with the flow fields for various design and operating parameters, which was limited in the previous CFD simulations.

  • PDF