• 제목/요약/키워드: Thermal behavior analysis

Search Result 1,140, Processing Time 0.04 seconds

고출력 GaN-based LED의 열적 설계 및 패키징

  • 신무환
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.24-24
    • /
    • 2003
  • Research activity in the III-V nitrides materials system has increased markedly in the past several years ever since high-brightness blue light-emitting diodes (LEDs) became commercially available. Despite of excellent optical properties of the GaN, however, inherently poor thermal property of the sapphire used as a substrate material n these devices may lead to thermal degradation of devices, especially during their high power operation. Therefore, dependable thermal analysis and packaging schemes of GaN-based LEDs are necessary for solid lighting applications under high power operation. In this paper, emphasis will be placed upon thermal design of GaN-based LEDs. Thermal measurements of LEDs on chip and packaging scale were performed using the liquid crystal thermographic technology and micro thermocouples for different bias conditions. By a series of optical arrangement, hot spots with specific transition temperatures were obtained with increasing input power. Thermal design of LEDS was made using the finite element method and analytical unit temperature profile approach with optimal boundary conditions. The experimental results were compared to the simulated data and the results agree well enough for the establishment of dependable prediction of thermal behavior in these devices. The paper will present a more detailed understanding of the thermal analysis of the GaN-based blue and white LEDs for high power applications.

  • PDF

외부 환경적 요인에 의한 파이프랙 구조물의 열적 거동 (Thermal Behavior of a Pipe-Rack Structure Subjected to Environmental Factors)

  • 이종한;이종재;김성연
    • 한국건설순환자원학회논문집
    • /
    • 제3권2호
    • /
    • pp.165-170
    • /
    • 2015
  • 파이프랙 구조물은 고온 고압의 파이프를 지지하며 플랜트의 운전 안전성을 좌우하는 매우 중요 구조물이다. 따라서, 파이프랙 구조물의 손상은 산업 전반에 부정적인 파급효과를 가져옴과 동시에 인명 및 재산상의 막대한 피해까지 가져오게 된다. 특히, 파이프랙 구조물은 외부환경에 노출되어 있어, 구조물의 적절한 설계 및 유지관리를 위하여 환경적 영향에 의한 거동 특성을 평가할 필요가 있다. 따라서, 가장 널리 설계되어지는 하나의 파이프랙 구조물을 대상 구조물로 선정하여 열-구조 연성해석을 실시하여 파이프랙 구조물의 온도분포와 열응력을 평가하였다. 외부 환경적 요인으로는 국내의 여수지역과 중동의 사우디 지역을 고려하여 파이프의 운전조건과 함께 외부환경 영향인자에 대한 고려 필요성을 검증하였다.

Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load

  • Bhagat, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1359-1389
    • /
    • 2016
  • Buckling and free vibration behavior of a laminated cylindrical panel exposed to non-uniform thermal load is addressed in the present study. The approach comprises of three portions, in the first portion, heat transfer analysis is carried out to compute the non-uniform temperature fields, whereas second portion consists of static analysis wherein stress fields due to thermal load is obtained, and the last portion consists of buckling and prestressed modal analyzes to capture the critical buckling temperature as well as first five natural frequencies and associated mode shapes. Finite element is used to perform the numerical investigation. The detailed parametric study is carried out to analyze the effect of nature of temperature variation across the panel, laminate sequence and structural boundary constraints on the buckling and free vibration behavior. The relation between the buckling temperature of the panel under uniform temperature field and non-uniform temperature field is established using magnification factor. Among four cases considered in this study for position of heat sources, highest magnification factor is observed at the forefront curved edge of the panel where heat source is placed. It is also observed that thermal buckling strength and buckling mode shapes are highly sensitive to nature of temperature field and the effect is significant for the above-mentioned temperature field. Furthermore, it is also observed that the panel with antisymmetric laminate has better buckling strength. Free vibration frequencies and the associated mode shapes are significantly influenced by the non-uniform temperature variations.

연소시간 중 노즐조립체의 열-구조적 거동분석에 관한 연구 (An Evaluation on Thermal-structural Behavior of Nozzle Assembly during Burning Time)

  • 노영희;서상규;정승민
    • 한국추진공학회지
    • /
    • 제22권4호
    • /
    • pp.36-43
    • /
    • 2018
  • 연소 중 고온, 고압, 고속의 연소가스가 작용하는 노즐조립체는 다양한 부품(목삽입재/내열재/구조체)이 접촉/접착의 형태로 조립되며, 유동(경계층 유동장)-열(기계/화학적 삭마, 숯 등 열반응, 열전달)-구조(마찰, 접촉, 접착, 동적거동 및 열응력)적 복합하중이 내부에 작용하며 복잡한 거동을 보이기 때문에 정확한 구조적 안전성을 계산하는데 한계가 있다. 본 연구는 연소시험 후 목삽입재 깨짐 현상이 발생한 노즐조립체에 대해 연소시간 중 열-구조적 거동분석을 해석적으로 수행하였다. 연소시간 중 시간별/위치별로 유동해석에서 계산된 내부압력과, 열반응을 고려한 열해석(Thermal Surface Reaction & Ablation Analysis)에서 계산된 노즐 표면의 삭마량 및 대류열전달계수가 구조해석의 경계/하중조건으로 부여된 후 열-변형 해석이 수행되는 연동해석(Co-simulation)기법을 사용하였다. 특히 구조해석 시각 부품별 경계면의 접착/접촉/마찰조건을 달리하며 연소시험 시 계측된 변형률값과 비교하여 가장 유사한 연소 중 거동분석 조건을 도출하였다.

희토류 및 기타 산화물 Doping 양에 따른 YSZ 기반 복합소재의 상형성 거동 분석 (Analysis of phase formation behavior of YSZ-based composites according to rare earth and other oxide doping amounts)

  • 최용석;이계원;전창우;남산;오윤석
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.368-375
    • /
    • 2022
  • YSZ (Yttria Stabilized Zirconia) is used as a thermal barrier coating material for gas turbines due to its low thermal conductivity and high fracture toughness. However, the operating temperature of the gas turbine is rising according to the market demand, and the problem that the coating layer of YSZ is peeled off due to the volume change due to the phase transformation at a high temperature of 1400℃ or higher is emerging. To solve this problem, various studies have been carried out to have phase stability, low thermal conductivity, and high fracture toughness in a high temperature environment of 1400℃ or higher by doping trivalent and tetravalent oxides to YSZ. In this study, the monoclinic phase formation behavior and crystallinity were comparatively analyzed according to the total doping amount of oxides by controlling the doping amounts of Sc2O3 and Gd2O3, which are trivalent oxides, and TiO2, which are tetravalent oxides, in YSZ. Through comparative analysis of monoclinic phase formation and crystallinity, the thermal conductivity of the thermal barrier coating layer according to the amount of doping was predicted.

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.

Nonlinear static analysis of smart beams under transverse loads and thermal-electrical environments

  • Ali, Hayder A.K.;Al-Toki, Mouayed H.Z.;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • 제7권2호
    • /
    • pp.99-112
    • /
    • 2022
  • This research has been devoted to examine nonlinear static bending analysis of smart beams with nano dimension exposed to thermal environment. The beam elastic properties are corresponding to piezo-magnetic material of different compositions. The large deflection analysis of the beam has been performed assuming that the beam is exposed to transverse uniform pressure. Based on the rule of Hamilton, the governing equations have been derived for a nonlocal thin beam and solved using differential quadrature method. Temperature variation effect on nonlinear deflection of the smart beams has been studied. Also, the beam deflection is shown to be affected by electric voltage, magnetic intensity and material composition.

소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석 (Analysis of the thermal behaviors of the cylinder block of a small gasoline engine)

  • 김병탁;박진무
    • 오토저널
    • /
    • 제15권3호
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

$Si/Al_2O_3/Si$ 형태의 SOI(SOS) LIGBT 구조에서의 열전도 특성 분석 (The thermal conductivity analysis of the SOI LIGBT structure using $Al_2O_3$)

  • 김제윤;김재욱;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.163-166
    • /
    • 2003
  • The electrothermal simulation of high voltage LIGBT(Lateral Insulated Gate Bipolar Transistor) in thin Silicon on insulator (SOI) and Silicon on sapphire (SOS) for thermal conductivity and sink is performed by means of MEDICI. The finite element simulations demonstrate that the thermal conductivity of the buried oxide is an important parameter for the modeling of the thermal behavior of silicon-on-insulator (SOI) devices. In this paper, using for SOI LIGBT, we simulated electrothermal for device that insulator layer with $SiO_2\;and\;Al_2O_3$ at before and after latch up to measured the thermal conductivity and temperature distribution of whole device and verified that SOI LIGBT with $Al_2O_3$ insulator had good thermal conductivity and reliability

  • PDF

厚板熔接部의 應力除去 熱處理時의 力學的 擧動에 關한 硏究 (A Study on the Mechanical Behavior of Welded Parts in Thick Plate during Post Welding Heat Treatment)

  • 방한서
    • Journal of Welding and Joining
    • /
    • 제11권4호
    • /
    • pp.103-111
    • /
    • 1993
  • Recently, several high-tensile steels(e.g. 80kg and above, $2^{1/4}Cr$-1Mo)having good quality to high temperature and pressure-resistance are widely used to construct petroleum-plant and pressure vessel of heat or nuclear-power plant. However, in the steels, reheating crack at grain boundaries of the heat affected zone(HAZ) occures during post welding heat treatment(PWHT)to remove welding residual stress. In order to study theoretically the characteristics of reheating crack created by PWHT, the computer program of three-dimensional thermal-elasto-plasto-creep analysis based on finite element method are developed, and then the mechanical behavior(history of creep strain accumulation and stress relaxation, etc)of welded join in thick plate during PWTH is clarified by the numerical results.

  • PDF