• 제목/요약/키워드: Thermal barrier coating

검색결과 203건 처리시간 0.033초

접착층의 두께가 용사 열차폐 코팅의 열응력에 미치는 영향 (Effects of the Thickness of Bond Coating on the Thermal Stress of TBC)

  • 김형남;최성남;장기상
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.228-231
    • /
    • 2000
  • Based on the principle of complementary energy an analytical method is developed for determining thermal stress distribution in an thermal barrier coating. This method gives the stress distributions which satisfy the stress-free boundary conditions at the edge. Numerical examples are given in order to verify the method and to investigate the thickness effects of the ZrO$_2$-8wt%Y$_2$O$_3$ top coat on the integrity of thermal barrier coating consisted of IN738LC substrate and MCrAlY bond coat.

  • PDF

Failure Mechanisms of Thermal Barrier Coatings Deposited on Hot Components in Gas Turbine Engines

  • Lee E. Y.;Kim J. H.;Chung S. I.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.106-111
    • /
    • 2005
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2-8wt.\% Y_{2}O_3$ ceramic coating during cyclic oxidation. $Al_{2}O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_{2}O_4 and Ni(Al,Cr)_{2}O_4$ during cyclic oxidation It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr,Al)_{2}O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

NiCoCrAlY 및 NiAl bond coat를 사용한 Thermal Barrier Coating의 고온안정성에 미치는 Pt의 영향 (Effect of Pt on the High Temperature Stability of NiCoCrAlY or NiAl Bond Coat in the Thermal Barrier Coating System)

  • 구성모;김길무
    • 한국재료학회지
    • /
    • 제15권6호
    • /
    • pp.375-381
    • /
    • 2005
  • High temperature oxidation behavior of thermal barrier coating (TBC) system (IN738 substrate + NiCoCrAlY or NiAl bond coat with or without Pt + yttria stabilized zirconia) prepared by air plasma spray (APS) process has been studied in order to understand the effect of Pt addition to bond coat on the stability of TBC system. Specimens were oxidized in thermal cycling and isothermal oxidation test at $1100^{\circ}C$. The Pt addition in TBC system with NiCoCrAlY bond coat showed a longer life time compared to that without addition of Pt. Pt addition to TBC system is believed to help the formation of more stable thermally grown oxide, $Al_2O_3$, at the TBC/bond coat interface, leading to a longer lifetime of TBC system.

2차유로 및 열차폐 코팅을 고려한 고압터빈의 열유동 복합해석 (Conjugate Heat Transfer Analysis of High Pressure Turbine with Secondary Flow Path and Thermal Barrier Coating)

  • 강영석;이동호;차봉준
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.37-44
    • /
    • 2015
  • Conjugate heat analysis on a high pressure turbine stage including secondary flow paths has been carried out. The secondary flow paths were designed to be located in front of the nozzle and between the nozzle and rotor domains. Thermal boundary conditions such as empirical based temperature or heat transfer coefficient were specified at nozzle and rotor solid domains. To create heat transfer interface between the nozzle solid domain and the rotor fluid domain, frozen rotor with automatic pitch control was used assuming that there is little temperature variation along the circumferential direction at the nozzle solid and rotor fluid domain interface. The simulation results showed that secondary flow injected from the secondary flow path not only prevents main flow from penetrating into the secondary flow path, but also effectively cools down the nozzle and rotor surfaces. Also thermal barrier coating with different thickness was numerically implemented on the nozzle surface. The thermal barrier coating further reduces temperature gradient over the entire nozzle surface as well as the overall temperature level.

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.

금속결합층의 조성이 $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ 단열층의 내구성에 미치는 영향 (Effect of Composition of Bond Coating on the Durability of the Plasma Sprayed $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ Thermal Barrier Coating)

  • 김혜성;김병희;서동수
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.73-80
    • /
    • 1999
  • The effect of alloy compositions of the bond coating on the plasma sprayed-thermal barrier coatings was investigated. The performance of the coating composed of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ and Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$was evaluated by isothermal and thermal cyclic test in an ambient atmosphere at 115$0^{\circ}C$. The failure of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coatings was occurred at the bond coating/ceramic coating interface while Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coating was failed at the substrate/bond coating interface after thermal cyclic test. The lifetime of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coatings was longer than Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coating. The oxidation rate of the NiCrAl bond coating examined by TGA was lower than CoNiCrAlY bond coatings. In summary, these results suggest that Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$system as thermal barrier coating be not suitable considering the durability of the coating layer for high temperature oxidation and thermal stress.

  • PDF

열차폐 코팅이 재생냉각 챔버에 미치는 열/구조적인 영향 (Thermo-structural Effects of Thermal Barrier Coating on Regenerative Cooling Chamber)

  • 유철성;이금오;김홍집;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.421-425
    • /
    • 2009
  • 재생냉각형 액체로켓 연소기 챔버에서 열차폐 코팅이 미치는 열/구조적인 영향에 대하여 유한요소 해석을 통하여 고찰하였다. 열차폐 코팅은 현재 개발하고 있는 연소기에 사용되는 NiCrAlY-$ZrO_2$과 향후 적용할 가능성이 있는 Ni-Cr 두 종류를 적용하였다. 열/구조해석 결과 NiCrAlY-$ZrO_2$ 코팅이 Ni-Cr 코팅에 비하여 열차폐에 의한 온도감소 효과가 크게 나타났다. 결과적으로 냉각채널의 온도와 변형 또한 NiCrAlY-$ZrO_2$ 코팅을 적용하였을 때 Ni-Cr 코팅보다 감소하였다. 외측구조물의 구조안정성에 있어서 Ni-Cr 코팅이 미치는 영향은 없었으나, NiCrAlY-$ZrO_2$ 코팅은 외측구조물의 유효응력을 감소시켜 챔버의 구조안정성을 증가시켰다.

  • PDF