• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.036 seconds

Analysis of Insulation Diagnostic Test for High Voltage motor (II) (고압전동기 절연진단 해석 (II))

  • Lee, Young-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2107-2109
    • /
    • 1999
  • The insulation diagnostic tests was performed at local thermal power plants high voltage motor. The insulation diagnostic tests include measurements of insulation resistance, polarization index, AC current, $tan{\delta}$, partial discharges. This paper describes Insulation characteristics for high voltage motor which located by inside and outside.

  • PDF

Characteristics of Pitch Production of Pyrolyzed Fuel Oil/Coal-tar Blending Feedstock by Thermal Polymerization Reaction (Pyrolyzed Fuel Oil/Coal-tar 혼합원료의 열중합 반응에 따른 Pitch 제조 특성)

  • Lee, Eunbyul;Kim, Hyeong Gi
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.328-333
    • /
    • 2020
  • In this study, blended feedstock derived pyrolyzed fuel oil (PFO) and coal-tar was prepared to produce a pitch by thermal polymerization reaction for manufacturing artificial graphite materials. The aromaticity value of 0.355 and 0.818 was obtained for PFO and coal-tar, respectively. In addition, PFO and coal-tar exhibited the difference tendency of weight loss curve for thermogravimetric analysis, which is related to the structural stability depending on the aromaticity and functional groups. The production characteristics confirmed that the pitch derived PFO showed lower production yield and higher softening point than that using blended feedstock. In particular, when comparing P360 (138.5 ℃) and B420 (141.4 ℃) having similar softening points, the production yields of both pitches exhibited 29.89 and 49.03 wt%, respectively. This is mainly due to the blending of PFO and coal-tar having high pitch polymerization reactivity including a large amount of alkyl groups and coal-tar having high thermal stability. This phenomenon indicated that the increased production yield is because of a synergic effect of both the high reactivity of PFO and thermal stability of coal-tar.

Evaluation of the Cryogenic Characteristics of Composite/Aluminum Ring Specimens (복합재/알루미늄 링 시편의 극저온 특성 평가)

  • 김명곤;강상국;김천곤;공철원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.25-32
    • /
    • 2006
  • In this study, the characteristics of filament wound composite/aluminum ring specimens were investigated at cryogenic temperature. The ring specimens were manufactured using carbon fibre and Type B epoxy resin which had been developed for cryogenic use. As a result of measuring thermal strains at -150℃, it was found that compressive thermal stress was induced in composite part on the contrary, tensile thermal stress in aluminum part which was about 32% of yield stress and in turn, caused aluminum to be yielded at lower load level. In addition, Thermal strains which resulted from finite element analysis showed good agreement with those of the experiment. After 6 mechanical loading cycles had been applied to the ring specimen at -150℃, tensile tests were performed at -150℃ using a split disk fixture. As a result, it was shown that composite strength in a liner-composite tank structure which is for the use of cryogenic propellant tank would be decreased by auto-frettage pressure which is applied to it.

Effect of thermal regime on the seismic response of a dry bridge in a permafrost region along the Qinghai-Tibet Railway

  • Zhang, Xiyin;Zhang, Mingyi;Chen, Xingchong;Li, Shuangyang;Niu, Fujun
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.429-442
    • /
    • 2017
  • Dry bridges have been widely applied in the Qinghai-Tibet Railway (QTR) to minimize the thermal disturbance of engineering to the permafrost. However, because the Qinghai-Tibet Plateau is an area with a high potential occurrence of earthquakes, seismic action can easily destroy the dry bridges. Therefore, a three-dimensional numerical model, with consideration of the soil-pile interactions, is established to investigate the thermal characteristics and their impact on the seismic response of the dry bridge in permafrost region along the QTR. The numerical results indicate that there exist significant differences in the lateral displacement, shear force, and bending moment of the piles in different thermal conditions under seismic action. When the active layer become from unfrozen to frozen state, the maximum displacement of the bridge pile reduces, and the locations of the zero and peak values of the shear force and bending moment also change. It is found that although the higher stiffness of frozen soil confines the lateral displacement of the pile, compared with unfrozen soil, it has an adverse effect on the earthquake energy dissipation capacity.

Explore the possible advantages of using thorium-based fuel in a pressurized water reactor (PWR) Part 1: Neutronic analysis

  • Galahom, A. Abdelghafar;Mohsen, Mohamed Y.M.;Amrani, Naima
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study discusses the effect of using 232Th instead of 238U on the neutronic characteristics and the main operating parameters of the pressurized water reactor (PWR). MCNPX version 2.7 was used to compare the neutronic characteristics of UO2 with (Th, 235U)O2 and (Th, 233U) O2. Firstly, the infinity multiplication factor (Kinf), thermal neutron flux, and power distribution have been studied for the investigated fuel types. Secondly, the effect of Gd2O3 and Er2O3 on the Kinf and on the radial thermal neutron flux and thermal power has been investigated to distinguish which of them is more suitable than the other in reactivity management. Thirdly, to illustrate the effectiveness of 232Th in decreasing the inventory of both the actinides and non-actinides, the concentration of plutonium (Pu) isotopes and minor actinides (MAs) has been simulated with the fuel burnup. Besides, due to their large thermal neutron absorption cross-section, the concentrations of 135Xe, 149Sm, and 151Sm with the fuel burnup have been investigated. Finally, the main safety parameters such as the reactivity worth of the control rods (ρCR), the effective delayed neutron fraction βeff, and the Doppler reactivity coefficient (DRC) were calculated to determine to which extent these fuel types achieve the acceptable limits.

Evaluation of Thermal Diffusivity and Electrochemical Properties of LiAlH4-PVDF Electrolyte Composites (LiAlH4-PVDF 전해질 복합체의 열확산 및 전기화학적 특성평가)

  • HWANG, JUNE-HYEON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.574-582
    • /
    • 2022
  • A lithium-ion battery exhibits high energy density but has many limitations due to safety issues. Currently, as a solution for this, research on solid state batteries is attracting attention and is actively being conducted. Among the solid electrolytes, sulfide-based solid electrolytes are receiving much attention with high ion conductivity, but there is a limit to commercialization due to the relatively high price of lithium sulfide, which is a precursor material. This study focused on the possibility of relatively inexpensive and light lithium hydride and conducted an experiment on it. In order to analyze the characteristics of LiAlH4, ion conductivity and thermal stability were measured, and a composites mixed with PVDF, a representative polymer electrolyte, was synthesized to confirm a change in characteristics. And metallurgical changes in the material were performed through XRD, SEM, and BET analysis, and ion conductivity and thermal stability were measured by EIS and LFA methods. As a result, Li3AlH6 having ion conductivity higher than LiAlH4 is formed by the synthesis of composite materials, and thus ion conductivity is slightly improved, but thermal stability is rapidly degraded due to structural irregularity.

Thermal-hydraulic analysis of He-Xe gas mixture in 2×2 rod bundle wrapped with helical wires

  • Chenglong Wang;Siyuan Chen;Wenxi Tian;G.H. Su;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2534-2546
    • /
    • 2023
  • Gas-cooled space reactor, which adopts He-Xe gas mixture as working fluid, is a better choice for megawatt power generation. In this paper, thermal-hydraulic characteristics of He-Xe gas mixture in 2×2 rod bundle wrapped with helical wires is numerically investigated. The velocity, pressure and temperature distribution of the coolant are obtained and analyzed. The results show that the existence of helical wires forms the vortexes and changes the velocity and temperature distribution. Hot spots are found at the contact corners between helical wires and fuel rods. The highest temperature of the hot spots reach 1600K, while the mainstream temperature is less than 400K. The helical wire structure increases the friction pressure drop by 20%-50%. The effect extent varies with the pitch and the number of helical wires. The helical wire structure leads to the reduction of Nusselt number. Comparing thermal-hydraulic performance ratios (THPR) of different structures, the THPR values are all less than 1. It means that gas-cooled space reactor adopting helical wires could not strengthen the core heat removal performance. This work provides the thermal-hydraulic design basis for He-Xe gas cooled space nuclear reactor.

Thermo-Mechanical Characteristics of a Plate Structure under Mechanical and Thermal Loading (외력과 열하중을 동시에 받는 판구조의 열-기계적 특성)

  • 김종환;이기범;황철규
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.26-34
    • /
    • 2006
  • The thermo-mechanical analysis and test were performed for plate structure under mechanical and thermal loading conditions. Infrared heating system and hydraulic loading system were used to simulate mechanical and thermal environment for the plate structure which is similar to the fin of the airframe. Also, FEM analysis using plastic option was added to evaluate thermo-mechanical behavior. Thermo-mechanical tests were conducted at elevated temperature and rapid heating(10℃/sec) condition with external loading together. To investigate the effect of heating environment, the strength at room temperature was compared with that of elevated temperature and rapid heating condition. A methodology for test and analysis for supersonic vehicle subjected to aerodynamic loading and heating was generated through the study. These experimental and analysis results can be used for designing thermal resistance structures of the supersonic vehicle.

A Study on Heat-transfer Characteristics the Shelter by Solar-heat Radiant (쉘터의 태양열 복사에 의한 열전달 특성에 관한 연구)

  • Shim, Dong-Hyouk;Noh, Kyung-Ho;Park, Jin-Yong;Lim, Young-Taek
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.25-33
    • /
    • 2018
  • When developing military equipment, it should be designed considering the temperature condition so that the operator can operate in a stable environment. The shelter for storing various military equipments is operated in various environments. The storage temperature and operating requirements of the test equipment and repair accessories shall be $-32^{\circ}C$ to $50^{\circ}C$ and the inside of the shelter shall be designed to meet the storage temperature and operating requirements. In this study, thermal analysis of a 2.5 ton military shelter operating under high temperature and solar heat conditions is performed considering MIL-STD-810G. The thermal analysis was applied by using the concept of heat resistance and heat circuit, and the solar thermal test was performed on the actually manufactured military shelter in order to verify the analysis results.