• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.028 seconds

Comparison on the Energy Performance of Underfloor Air Distribution System According to Modeling Method Using EnergyPlus (EnergyPlus를 이용한 바닥공조시스템의 모델링 방법에 따른 에너지 성능 비교)

  • Jang, Hyang-In;Yoon, Seong-Hoon;Lee, Hyun-Soo;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.718-723
    • /
    • 2012
  • The purpose of this study is to propose modeling method of Underfloor Air Distribution System with reliability and validity by comparing characteristics of modeling methods. For this, the modeling methods of UFAD were selected by investigating various modeling methods of previous researches. Then, simulations were conducted by using EnergyPlus which is dynamic analysis program of building energy. Annual energy consumption for each method was compared with a wide range of indoor thermal loads. As a result, the methodology of reducing internal gains can cause under sizing of the system. It suggests modeling methods to reflect occupied zone air-conditioning, temperature stratification and supply plenum which are the main characteristics of UFAD.

Effects of constituents in CNT pastes on the field emission characteristics of carbon nanotubes

  • Yoon, Seung-Il;Kim, Sam-Soo;Lee, Yang-Kyu;Kim, Tae-Kwon;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1206-1209
    • /
    • 2006
  • Carbon nanotubes (CNTs) have been significantly used for the field emitters for display applications. However, the lifetime of CNT emitters which are formed by screen printing technique is not guaranteed yet, because the constituents in CNT paste affect the lifetime of CNTs. The CNT pastes for screen printing are normally composed of organic vehicles (nitro cellulose, ethyl cellulose, etc) and additives (glass frits, ITO, etc) with CNTs. In this study, the effects of constituents in CNT pastes on the lifetime and emission characteristics of CNTs were investigated by thermal and electrical analysis. Use of glass frits worsened the lifetime and electron emission of CNTs. However, an addition of ITO to CNT paste rather improved the lifetime of CNTs. Degradation of CNTs was small when nitro cellulose was used in CNT paste as an organic vehicle.

  • PDF

Propagation Characteristics of a Surface Crack on a Semi-Infinite Body Due to Frictional Heating (마찰열에 의한 반무한체 표면균열의 전파특성)

  • Park, Jun-Ho;Park, Eun-Ho;Kim, Chae-Ho;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3126-3134
    • /
    • 1996
  • In this paper, to examine the propagation of inclined surface crack due to frictional heating, analytic model is considered as the semi-infinite elastic body subjected to the thermo-mechanical loading of an asperity moving with a high speed. Considering the moving of frictional heat source and convection on a semi-infinite surface having inclined crack, theoretical analysis was carried out to estimate the propagation characteristics of thermo-mechanical crack. Numerical results showed that stress intensity factor $K_\prod/P_0\sqrt{c}$ is increasing with increasing velocity and frictional coefficient, inclined degree, decreasing crack length and the maximum value of it is positioned at the trailing edge. So it is shown that the propagation probability of surface crack is high at the trailing edge of contact area as increasing velocity and frictional coefficient, inclined degree, as decreasing crack length.

Analysis of the electrical characteristics of HV-MOSFET under various temperature (고내압 MOSFET의 고온 영역에서의 전기적 특성 분석)

  • Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.95-99
    • /
    • 2007
  • In this study, the electrical characteristics of Symmetric and Asymmetric High Voltage MOSFET(HV-MOSFET) under high temperature were investigated. And, the specific on-resistance, threshold voltage, transconductance, drain current of the HV-MOSFETs were measured over a temperatures range of 300K ${\leq}$ T ${\leq}$400K. From the result of measured data, specific on-resistance increases slightly with increasing temperature. Especially, at high temperature(at 400K) specific on-resistance was increased about 30% than that in room temperature. And, in high temperature condition (at 400K), drain current was decreased about 30%, Also, transconductance(gm) was decreases with increasing temperature.

  • PDF

A Study on the Distribution Characteristics of Sulfur Compounds in Ambient air using Continuous Monitoring Method in Incheon Area

  • Seo, Seok-Jun;Lim, Yong-Jae;Hong, You-deok;Park, Geon-Young
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.128-134
    • /
    • 2015
  • This paper focuses on the applicability of a continuous monitoring method on trace sulfur compounds in the ambient air by TD and GC/PFPD. The target compounds for monitoring include H2S(hydrogen sulfide), Methyl mercaptan, Dimethyl Sulfide, and Dimethyl disulfide. The result of QA/QC on monitoring instruments satisfies all the standards of Odor Measurement and Analysis Method, showing that the reproductivity of the compounds by concentration is within 10%, linearity is above 0.98 of a correlation efficient, method detection limit is 0.16 ppb by MM standard, and recovery rate is over 70%. Monitoring was conducted for two years from March 2006 to February 2008. As a result of the monitoring, the average concentration of H2S was 0.08 ppb, with the maximum concentration at 16.15 ppb. The result indicates that it is reasonable to do continuous monitoring as there appears a spontaneous event of high concentration by the condition of the site during monitoring odor-causing substances. Therefore, it is suggested that the continuous monitoring method used in this paper is appropriate to identify the characteristics of sudden occurrence and concentration variations of sulfur compounds.

The Tensile Characteristics of Steel Sheets at Various Temperature Conditions (박강판의 온도변화에 따른 인장특성)

  • 이항수;오영근
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.101-110
    • /
    • 2001
  • The thermal problem of press work is classified into two cases. First, the temperature of forming die passively rises due to the heating effect of plastic deformation. The warm forming is the second case in which the external heating is applied to the die and blank holder. So, the purpose of this study is to provide database for the forming characteristics at various temperature conditions. In this study, the tensile test was carried out for the commercial steel sheets such as SCPI and SCP3C with the thickness of 0.7mm and 1.4mm respectively. The tensile strength, total elongation, Lankford value and the flow curve have been obtained at the temperature of $25^{\circ}C$, $50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$ and $300^{\circ}C$, respectively. From the results, we can see that both the tensile strength and total elongation decrease as the temperature increases. In the light of anisotropy, the effect of thickness is dominant than the material specs. For the temperature dependency of flow curves, there are only small differences for the work-hardening exponent, and the strength intensity decreases monotonically as temperature increases. The present results we useful as input data for the analysis of sheet metal forming processes with the various temperature conditions.

  • PDF

Characteristics of Thermal Oxidation on Hot-Pressed Pure Yttria Ceramics (고온가압으로 소결한 고순도 이트리아 세라믹 소결체의 산화반응 특성)

  • Choi, Jinsam;Shin, Dong Woo;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • We investigated the characteristics of hot-pressed pure yttria ceramics, and annealed them in an oxidation atmosphere. Regardless of the heat treatment in the oxidation atmosphere, XRD analysis showed that all the samples had a $Y_2O_3$ phase without structural change. Even though the color variation of the hot-pressed $Y_2O_3$ ceramics was due to the sintering temperatures, the oxidation process turned the color of the $Y_2O_3$ ceramics into white. The color change during oxidation treatment appears to be related to oxygen defects. In addition, oxygen defects also affected the weight change and microstructure of the $Y_2O_3$ ceramics. The $Y_2O_3$ ceramic sintered at $1600^{\circ}C$ had a $5.03g/cm^3$ density, which is close to the theoretical density of $Y_2O_3$. As the sintering temperature increased, small homogeneous grains grew to large grains which affected the Vickers hardness. $Y_2O_3$ ceramics hot-pressed at $1600^{\circ}C$ and annealed at $1200^{\circ}C$ had a flexural strength of 140MPa.

Evaluation of Environment Imapcts on TiN-ZrCo Composites Hydrogen Seperation by Material Life Cycle Assessment (TiN-ZrCo 복합수소 분리막의 제조와 환경성 평가)

  • KIM, MINGYEOM;AHN, JOONGWOO;HONG, TAEWHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.627-634
    • /
    • 2017
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-ZrCo membrane manufacturting process. Gabi was used as software. The Eco-Indicator 99 methodology was used to evaluate the 11 impact categories and the 10 impact categories using the CML 2001 methodology. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of the characterization and normalization, the environmental impacts of each category of impacts were GWP 100 years with the highest environmental impact of 99.9%.

Theoretical study of flow and heat transfer around silicon bridge in a flow sensor (유속 센서의 실리콘 브리지 주위의 유동 및 열전달 수치해석에 관한 연구)

  • Hwang, Ho-Yeong;Kim, Ho-Yeong;Jeong, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1376-1384
    • /
    • 1996
  • Measuring the velocity of fluid flow, semiconductor flow sensors are widely used in the various fields of engineering and science such as the semiconductor manufacturing processes and electronic control engines for automobiles. In the near future, this type of sensors will replace present hot wire type sensors or other type flow sensor due to its low price, easy handling and small size. To develop the advanced semiconductor flow sensor, it is necessary to obtain characteristics of the flow and the heat transfer around the sensor in advance. In the present study, the theoretical analysis including mathematical modeling and numerical calculation to predict the characteristics of heat transfer and flow field around the sensor was carried out. The main parameters for optimum design of the flow sensor are the free stream velocity, the heat generation rate of silicon arm and the distance between arms. Effects of these parameters on flow and heat transfer around the sensor and the temperature difference between arms are examined.

A Study of the Prediction of the Temperature Reduction of Tire Sidewalls According to the Shape of the Cooling Fins (냉각핀 형상에 따른 타이어 사이드월의 표면온도 저감 효과 예측에 관한 연구)

  • Park, Jae Hyen;Jung, Sung Pil;Chung, Won Sun;Chun, Chul Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.245-253
    • /
    • 2016
  • The friction and deformation of a tire causes heat generation, which causes a temperature rise of the tire. This temperature rise can be a source of tire damage. The object of this study is to investigate the cooling effect of the application of a fin to the tire side to suppress the temperature rise. Eight different fin shapes were considered, and the sidewall surface temperature reduction owing to the cooling fin shape was numerically analyzed. In addition, the flow characteristics and heat transfer characteristics of the vortex of the pin rear were compared.