• Title/Summary/Keyword: Thermal Transient Analysis

Search Result 483, Processing Time 0.026 seconds

Thermal Transient Analysis of Electric Initiator Used SUS 304 Bridgewire (SUS 304 발열선을 사용한 전기식 착화기의 열특성 분석)

  • Yoon Ki-Eun;Ryu Byung-Tae;Choi Hong-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.184-187
    • /
    • 2005
  • Performing thermal transient test on electric initiator with SUS 304 bridgewire(diameter 2.3mil) and $Zr-KClO_4$ primary charge and analysing the test data using Fitted Wire Model shows that the thermal characteristic parameter related to primary charge is changed sharply around $300^{\circ}C$. It is determined that this phenomenon is due to endothermic reaction from phase transition of $KClO_4$, which is used as primary charge, and to physical change of thermal transient interface between bridgewire and primary charge. With this results, useful temperature range for the parameter obtained from thermal transient test can be suggested.

  • PDF

Structural and Thermal Analysis of Disk Brake (디스크 브레이크의 구조 및 열 해석)

  • Cho, Jae-Uug;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.211-215
    • /
    • 2010
  • Continuous contraction and expansion of disk brake can be due to friction and temperature difference at repeated sudden braking. As serious vibration at disk is produced, the braking force will be changed ununiformly and braking system can not be stabilized. Temperature and heat flux at disk brake are investigated by structural and thermal analysis in this study. The maximum equivalent stress and displacement are shown respectively at the ventilated hole and the lower part of disk plate. At thermal analysis of initial state, temperature on disk plate is distributed from $95.9^{\circ}C$ to $100^{\circ}C$. The maximum heat flux of $0.0168W/mm^2$ is shown at the inner friction part between disk plate and pad. At thermal analysis of transient state, temperature on disk plate is distributed from $95^{\circ}C$ to $96.5^{\circ}C$ after 100 second. The maximum heat flux of $0.0024W/mm^2$ is also shown at the inner friction part between disk plate and pad. By comparing with initial state, the temperature on disk plate is more uniformly distributed and heat flux is more decreased by 7 times at transient state.

Thermal Stress Analysis of Ramjet Dome Port Part (램제트 돔 포트 부의 열응력 해석)

  • Kim, Seung-Joong;Choi, Young-Jin;Lee, Young-Shin;Kim, Jae-Hoon;Koo, Song-Hoe
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.716-721
    • /
    • 2004
  • In this study, dome port bringing up for discussion where the ramjet occurs in flying it presents the tendency of distribution of thermal contour due to temperature and pressure. It is assumed that the material of ramjet is steel for the ease of result analysis. It applied matrial property which it follows by temperature and input boundary condition that changing temperature and pressure on each region by time difference for transient analysis. Thermal analysis region is decided until dome port part is separated and operate analysis in 0.5 second. Finally we draw tendency of thermal contour in ramjet dome port part by temperature and pressure.

  • PDF

Analysis of Thermal Deformations of Shadow Mask and Electronic Beam Mislanding (쉐도우마스크의 열변형과 전자빔의 오차 해석)

  • 김현규;박영호;김상기;임세영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.81-90
    • /
    • 1994
  • Finite element analysis is performed for transient thermal deformation of a shadow mask inside the Braun tube and the landing shift or mislanding of the electronic beam is calclated. The shadow mask has numerous slits through which the electronic beams are guided to land on the designed phosphor. Its thermal deformations therefore cause the mislanding of the electronic beam and result in decolorization of a screen. For realistic finite element analysis, firstly the effective thermal conductivity and the effective elastric modulus are calculated, and the shadow mask is modeled as shell without slits. Next the nonlinear finite element formulation is developed for transient heat transfer on the shadow mask, wherein thermal radiation is a major heat transfer mechanism. Analysis of the resulting thermoelastic deformations is followed, from which the mislanding of the electronic beam is obtained. The present finite element scheme may be efficiently used for thermal deformation design of a shadow mask.

  • PDF

Development and Verification of Thermal Analysis Model for Thermal Vacuum Test of Satellite Components (인공위성 탑재품 수준 열진공 시험에 대한 열해석 모델의 개발과 환경시험 결과를 이용한 검증)

  • Kim, Sang-Ho;Seo, Hyun-Suk;You, Jae-Ho;Han, Eun-Soo;Kim, Tai-Kyung;Kim, Hyeong-Dong;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.842-847
    • /
    • 2010
  • Thermal analysis for the simulation of satellite component level thermal vacuum test processes was carried out by considering thermal vacuum test environment condition, thermal vacuum chamber configuration, and satellite's inner thermal environment. The transient analysis results can be obtained for the temperatures of component and thermal vacuum chamber assemblies. The thermal analysis model was verified with the component thermal environmental test results by using enhanced thermal vacuum chamber.

Thermal Dissipation Characteristics of Multi-Chip LED Packages (멀티 칩 LED 패키지의 방열 특성)

  • Kim, Byung-Ho;Moon, Cheol-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.34-41
    • /
    • 2011
  • In order to understand the thermal performance of each LED chips in multi-chip LED package, a quantitative parametric analysis of the temperature evolution was investigated by thermal transient analysis. TSP (Temperature Sensitive Parameter) value was measured and the junction temperature was predicted. Thermal resistance between the p-n junction and the ambient was obtained from the structure function with the junction temperature evolution during the cooling period of LED. The results showed that, the thermal resistance of the each LED chips in 4 chip-LED package was higher than that of single chip- LED package.

A Numerical Study on the Response of Jointed Rock Mass Due to Thermal Loading of Radioactive Waste (방사성 폐기물의 열하중에 의한 절리암반의 거동에 관한 수치해석적 연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.102-118
    • /
    • 1994
  • Thermomechanical analysis is conducted on the radioactive repository in deep rock mass considering the in-situ stress, excavation and thermal loading of a radioactive waste. Thermomechanical properties of a discontinuous rock mass are estimated by a theoretical method so called sequential analysis. Using the estimated properties as input for finite element analysis, the influence on temperature distribution and thermal stress is analyzed within the scope of 2-dimensional steady state and transient heat transfer and coupled thermal elastic plastic behaviour. Granitic rock mass is taken for this analysis. The analysis is done for two different rock mass conditions, i.e. continuous-homogeneous and highly jointed conditions, for the purpose of comparison. In the case of steady state, the extent of disturbed zone around the storage tunnel due to the heat production of the spent-fuel canister varies depending on the thermomechanical properties of the rock mass. In the case of transient analyses, the response of the jointed rock mass to the thermal loading after radioactive waste disposal varies significantly with time, resulting in dramatic changes in the both size and location of disturbed zone.

  • PDF

Transient Voltage Analysis of Low-Voltage Source Circuit inn Thermal Power Plant due to Grounding Potential Rise by Lightening (낙뢰침입에 의한 대지전위상승이 발전소 저압전원회로에 미치는 과전압 해석)

  • Yang, Byeong-Mo;Jeong, Jae-Kee;Min, Byeong-Wook;Lee, Jong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1644-1646
    • /
    • 1998
  • High-Smokestacks have been the symbol of the thermal power plant. Those cause the thermal power plant to be damaged by lightening for reaching several hundreds meter. In this paper, we investigated the accident of low-voltage source circuit due to grounding potential rise by lightening via high-smokestack in practically driving power plant, described examination into the cause and the impulse analysis. We analysed the transient voltage by EMTP(ElectroMagnetic Transient Program) via modeling the grounding system of power plant. This theoretical results coincided with practical accidental state. Therefore, it was verified that we could apply the grounding system of power plant and substation with the distribution-circuit analysis(EMTP).

  • PDF

Transient Analysis of a Simple Cycle Gas Turbine Engine

  • Kim, SooYong;Soudarev, B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.22-29
    • /
    • 2000
  • A method to simulate the gas turbine transient behavior is developed. The basic principles of the method and main input data required are described. Calculation results are presented in terms of whole operating regime of the engine. The influence of initial parameters such as starting engine power, moment of inertia of the rotor, fuel schedule on performance characteristics of gas turbine during transient operation is shown. In addition, the effect of bleeding air on transient behavior is also considered. For validation of the developed computer code, a comparative analysis with experimental data obtained from a heavy duty gas turbine is made. Calculation results agree well with the experimental data for the range of operating regime studied and proved applicability of the developed technique to initial design stage of control system.

  • PDF

Thermal Analysis of APD Electronics for Activation of a Spaceborne X-band 2-axis Antenna (위성 데이터 전송용 2축 짐벌식 X-band 안테나 구동용 전장품 APD 열 해석)

  • Ha, Heon-Woo;Kang, Soo-Jin;Kim, Tae-Hong;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • The thermal analysis of electronic equipment is required to predict the reliability of electronic equipment being loaded on a satellite. The transient heat transfer of electronic equipment that was developed recently has been generated using a large-scale integration circuit. If there is a transient heat transfer between EEE(Electric, Electronic and Electro mechanical) parts, it may lead to failure the satellite mission. In this study, we performed the thermal design and analysis for reliability of APD(Antenna Pointing Driver) electronics for activation of a spaceborne X-band 2-axis antenna. The EEE parts were designed using a thermal mathematical model without the thermal mitigation element. In addition, thermal analysis was performed based on the worst case for verifying the reliability of EEE parts. For the thermal analysis results, the thermal stability of electronic equipment has been demonstrated by satisfying the de-rating junction temperature.