• Title/Summary/Keyword: Thermal Stress-Strain Distributions

Search Result 33, Processing Time 0.027 seconds

Optimum Shape Design Techniques on Direct Roller of Molten Metal Considering Thickness Control of Width Direction (폭방향 두께제어를 고려한 용탕직접 압연로울의 최적형상 설계기법)

  • Kang, C.G.;Kim, Y.D.;Jung, Y.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.73-85
    • /
    • 1997
  • The rolling force and roll deformation behavior in the twin roll type strip continuous casting process has been computed to estimate the thermal charcteristics of a caster roll. To calculation of rolling force, the relationship between flow stress and strain for a roll material and casting alloy are assumed as a function of strain-rate and temperature because mechanical properties of a casting materials depends on tempera- ture. The three dimensional thermal dlastic-plastic analysis of a cooling roll has also been carried out to obtain a roll stress and plastic strain distributions with the commercial finite element analysis package of ANSYS. Temperature fields data of caster roll which are provided by authors were used to estimated of roll deformation. Roll life considering thermal cycle is calculated by using thermal elastic-plastic analysis results. Roll life is proposed as a terms of a roll revolution in the caster roll with and without fine failure model on the roll surface. To obtain of plastic strain distributions of caster roll, thermomechan- ical properties of roll sleeve with a copper alloy is obtained by uniaxial tensile test for variation of temperature.

  • PDF

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate (평판용접에 관한 평면변형 열탄소성 해석)

  • 방한서;한길영
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

Thermal stress analysis of the turbocharger housing using finite element method (유한요소법에 의한 터보차져 하우징의 열응력 해석)

  • Choi, B.L.;Bang, I.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2011
  • A turbocharger is subjected to rapid temperature changes during thermal cyclic loads. In order to predict the thermo-mechanical failures, it's very important to estimate temperature distributions under the thermal shock test. This paper suggest the finite element techniques with the temperature histories, a constitutive material model and the mechanical constraints to calculate the thermal stresses and plastic strain distributions for the turbine housing. The first step was to develop a simple coupon approach to represent the failure mechanism of the classical design shapes and secondly applied the actual turbocharger to predict and validate the weak locations under the physical engine test.

Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law

  • Ootao, Yoshihiro;Ishihara, Masayuki
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.421-442
    • /
    • 2013
  • This paper is concerned with the theoretical treatment of transient thermoelastic problems involving a functionally graded hollow cylinder with piecewise power law due to asymmetrical heating from its surfaces. The thermal and thermoelastic constants of each layer are expressed as power functions of the radial coordinate, and their values continue on the interfaces. The exact solution for the two-dimensional temperature change in a transient state, and thermoelastic response of a hollow cylinder under the state of plane strain is obtained herein. Some numerical results for the temperature change and the stress distributions are shown in figures. Furthermore, the influence of the functional grading on the thermal stresses is investigated.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

A study on the stress and strain during welding of plate-to-pipe joint (평판-관 구조물 용접시 발생하는 응력 및 변형율에 관한 연구)

  • 나석주;김형완
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.30-39
    • /
    • 1986
  • In manufacturing of pipe walls for boiler units, distortion can result in pipe-web-pipe joints from the nonuniform expansion and contraction of the weld metal and the adjacent base metal during heating and cooling cycle of the welding process. In this study, the stresses and strains during longitudinal welding of the plate-to-pipe joint were investigated. Using the method of successive elastic solution, longitudinal stresses and strains during and after welding were calculated from the information of temperature distributions obtained by Rosenthal's equations. In order to confirm the validity of the numerical results, the temperature and residual stress distributions were measured and compared with the calculated results. In spite of some assumptions, the one-dimensional analytical results of residual stresses were in fairly good agreement with the experimental ones. The residual stresses due to welding of plate-to-pipe joints are tensile near the weld line and compressive in the base metal as in the welding of plates. the amount and distribution of residual stresses were deeply dependent on the heat input ratio of the plate and pipe.

  • PDF

Thermo-Elasto-Plastic Finite Element Analysis of Powder Hot Forging (열간분말단조 공정의 열탄소성 유한요소해석)

  • 김형섭
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.83-89
    • /
    • 1997
  • A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.

  • PDF

Calculation of residual stresses by thermal elasto-plastic analysis (열탄소성 해석에 의한 잔류응력의 계산)

  • 장창두;서승일
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.35-43
    • /
    • 1988
  • Welding residual stresses were calculated by two dimensional thermal elasto-plastic analysis using element method. Complicated plastic behavior during heat transfer was simulated with time. Fist, temperature distributions. To consider time varying behavior of material properties and loading and unloading processes, iterative calculation based on initial stiffness method was carried out. The method proposed by Yamata was used in time increment control which determined the accuracy of claculation. comparison with other caculated and experimental results shows fairly good agreement.

  • PDF

Estimation of the Thickness and the Material Combination of the Thermal Stress Control Layer (TSCL) for the Stellite21 Hardfaced STD61 Hot Working Tool Steel Using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 Stellite21 초합금으로 하드페이싱된 STD 61 열간금형강의 열응력제어층 재료조합 및 두께 예측)

  • Park, Na-Ra;Ahn, Dong-Gyu;Oh, Jin-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.857-862
    • /
    • 2014
  • The research on a thermal stress control layer (TSCL) begins to undertake to reduce residual stress and strain in the vicinity of the joined region between the hardfacing layer and the base part. The goal of this paper is to estimate the material combination and the thickness of TSCL for the Stellite21 hardfaced STD61 hot working tool steel via three-dimensional finite element analysis (FEA). TSCL is created by the combination of Stellite21 and STD61. The thickness of TSCL ranges from 0.5 mm to 1.5 mm. The influence of the material combination and the thickness of TSCL on temperature, thermal stress and thermal strain distributions of the hardfaced part have been investigated. The results of the investigation have been revealed that a proper material combination of TSCL is Stellite21 of 50 % and STD61 of 50 %, and its appropriate thickness is 1.0 mm.