• Title/Summary/Keyword: Thermal Stress Intensity

Search Result 139, Processing Time 0.058 seconds

Determination of Thermal Shock Stress Intensity Factor for Elliptical Crack by Modified Vainshtok Weight Function Method (수정 Vainshtok 가중함수법에 의한 타원균열의 열충격 응력세기계수의 결정)

  • 이강용;김종성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.463-474
    • /
    • 1995
  • Modified Vainshtok weight function method is developed. The thermal shock stress intensity factors for elliptical surface cracks existed in the thin and thick walled cylinders are determined. The present results are compared with previous solutions and shown to be good agreement with them.

Thermal Stress Intensity Factors for Rigid Inclusions of Cusp Crack Shape (커스프균열형 강체함유물의 열응력 세기계수에 관한 연구)

  • 이강용;최흥섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.497-504
    • /
    • 1988
  • The steady state thermal stress intensity factors (TSIF's) are analyzed for hypocycloid, symmetric airfoil and symmetric lip type rigid inclusions embedded in infinite elastic solids, using Boganoff's complex variable approach in plane thermoplasticity. Two thermal conditions are considered, one with an uniform heat flow disturbed by an insulated rigid inclusion of cusp crack shape and the other with an uniform heat flow disturbed by a rigid inclusion of cusp crack shape with fixed boundary temperature. The tendencies of TSIF's for rigid inclusions of cusp crack shape are somewhat different from those of traction free cusp cracks. However, if k=-1, the non-dimensionalized TSIF's for rigid inclusions of cusp crack shape become those of traction free cusp cracks like the tendencies of the SIF's under mechanical loading conditions. The thermal stress and displacement components for a rigid circular inclusion of radius Ro are drived from the results of a hypocycloid crack type rigid inclusion.

Determination of Stress Intensity Factors for Embedded Elliptical Crack in Turbine Rotor (터빈축차내에 내재된 타원균열의 응력세기계수 결정)

  • 이강용;김종성;하정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1229-1242
    • /
    • 1995
  • The thermal shock stress intensity factors of semi-elliptical surface crack in finite plate and the stress intensity fractors of embedded elliptical crack in turbine rotor is determined by means of Vainshtok weight function method. In case of semi-elliptical surface crack, the solution is compared with previous solution. The stress intensity factor for embedded elliptical crack in turbine rotor loaded by centrifugal and thermal loading is also determined. In this case, the value of stress intensity factor is larger at crack contour near internal radius surface and is almost constant at the crack contour farther from internal radius surface.

Approximation Method for the Calculation of Stress Intensity Factors for the Semi-elliptical Surface Flaws on Thin-Walled Cylinder

  • Jang Chang-Heui
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.319-328
    • /
    • 2006
  • A simple approximation method for the stress intensity factor at the tip of the axial semielliptical cracks on the cylindrical vessel is developed. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. For these, 3-D finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R=0.1. The approximation solutions are within $\pm2.5%$ of the those of finite element analysis using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the approximation method provides sufficiently accurate stress intensity factor values for the axial semi-elliptical flaws on the surface of the reactor pressure vessel.

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

Measurement of Stress Intensity Factor of Isotropic Material Using SPATE (SPATE에 의한 등방성체의 응력확대계수 측정)

  • Hwang, Jae-Seok;Seo, Jae-Guk;Lee, Hyo-Jae;Nam, Jeong-Hwan;Rowlangs, R.E.;Choe, Yeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.393-404
    • /
    • 1997
  • SPATE(Stress Pattern Analysis by Thermal Emission) can be effectively used to analyze the stress distributions of isotropic structure under the repeated load by non-contact. In this research, the measuring method and the measuring concept of stress intensity factor of isotropic material by SPATE are suggested. The validity of the method and the concept was certified through SPATE experiment.

Thermal Crack Creation Process in an Automotive Brake Disk (자동차 브레이크 디스크의 열 균열 생성)

  • Ahn, S.;Lee, B.;Cho, C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.143-147
    • /
    • 2000
  • This describes thermal crack creation process in automotive disks. Thermal cracks have been serious defects which induced disastrous accidents during traveling. The thermal cracks must be regularly eye-inspected. The cracks have been experimentally analysed; but they were not reported by analytic means yet. This paper proposed thermal crack creation process by a computer simulation which enlightened how to investigate thermal crack by cheap means. We explained the disk thermal crack creation and calculated stress intensity factor of an assumed surface crack in an automotive disk.

  • PDF

Analyses of Stress Singularities on Bonded Interfaces in the IC Package by Using Boundary Element method (경계요소법을 이용한 반도체 패키지의 응력특이성 해석)

  • Park, Cheol-Hee;Chung, Nam-Yong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.94-102
    • /
    • 2007
  • Applications of bonded dissimilar materials such as large scale integration (LSI) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in LSI. In order to investigate stress singularities on the bonded interface edges and delamination of die pad and resin in the IC package. In this paper, stress singularity factors(${\Gamma}_i$) and stress intensity factors($K_i$) considering thermal stress in the IC package were analyzed by using the 2-dimensional elastic boundary element method(BEM).

Stress Intensity factor Calculation for the Axial Semi-Elliptical Surface Flaws on the Thin-Wall Cylinder Using Influence Coefficients (영향계수를 이용한 원통용기 축방향 표면결함의 응력확대계수의 계산)

  • Jang, Chang-Heui;Moon, Ho-Rim;Jeong, Ill-Seok;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2390-2398
    • /
    • 2002
  • For integrity analysis of nuclear reactor pressure vessel, including the Pressurized thermal shock analysis, the fast and accurate calculation of the stress intensity factor at the crack tip is needed. For this, a simple approximation scheme is developed and the resulting stress intensity factors for axial semi-elliptical cracks in cylindrical vessel under various loading conditions are compared with those of the finite element method and other approximation methods, such as Raju-Newman's equation and ASME Sec. Xl approach. For these, three-dimensional finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R = 0.1. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite clement analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. The approximation solutions are within $\pm$2.5% of the those of FEA using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the VINTIN method provides sufficiently accurate stress intensity factor values for axial semi-elliptical flaws on the surface of the reactor pressure vessel.

Deterministic structural and fracture mechanics analyses of reactor pressure vessel for pressurized thermal shock

  • Jhung, M.J.;Park, Y.W.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.103-118
    • /
    • 1999
  • The structural integrity of the reactor pressure vessel under pressurized thermal shock (PTS) is evaluated in this study. For given material properties and transient histories such as temperature and pressure, the stress distribution is found and stress intensity factors are obtained for a wide range of crack sizes. The stress intensity factors are compared with the fracture toughness to check if cracking is expected to occur during the transient. A round robin problem of the PTS during a small break loss of coolant transient has been analyzed as a part of the international comparative assessment study, and the evaluation results are discussed. The maximum allowable nil-ductility transition temperatures are determined for various crack sizes.