• 제목/요약/키워드: Thermal Stress Analysis

검색결과 1,526건 처리시간 0.026초

연속주조 몰드의 구조해석 (Structural Analysis of Continuous Casting Mold)

  • 원종진;이종선;홍석주
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.104-110
    • /
    • 2001
  • The objective of this study is structural analysis of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, thermal stress and thermal strain behavior for continuous casting mold. Structural analysis was made using thermal analysis result, utilizing transient analysis of ANSYS. This structural analysis results, many variables such as casting speed, cooling condition film coefficient, convection and load condition are considered.

  • PDF

드럼 브레이크에서의 열응력에 의한 내구성을 통한 융합적 분석 (Convergent Analysis through Durability by Thermal Stress at Drum Brake)

  • 오범석;조재웅
    • 한국융합학회논문지
    • /
    • 제11권5호
    • /
    • pp.139-144
    • /
    • 2020
  • 본 연구에서는 드럼자체와 브레이크에 대한 시뮬레이션 해석을 하였으며 열해석 결과와 구조 해석을 통한 내구성을 고찰하여 그 해석 결과를 얻었다. 브레이크 실린더로 인하여 힘을 받는 라이닝,라이닝의 확장으로 인하여 힘을 받는 드럼 내부, 축의 회전으로 인하여 힘을 받는 드럼에 대한 열응력 및 구조 해석을 통하여 어느 부분에 등가응력과 변형량이 큰지를 확인하였다. 본 연구 결과를 종합하여 브레이크 디스크설계에 응용한다면 열변형 방지 및 그 내구성을 증대시키는데 활용성이 클 것으로 사료된다. 본 연구 결과는 실제적으로 드럼 브레이크에서의 열응력에 견딜 수 있는 내구성 있는 설계에 유용하게 적용할 수 있다. 계절별 기차선로 이음새에서의 내구성 해석을 적용함으로서 본 연구 결과가 미적인 설계에 응용되는 융합 연구에 유리하다고 보여진다.

Transient thermal stress of CFRP propellant tank depending on charging speed of cryogenic fluid

  • Jeon, Seungmin;Kim, Dongmin;Kim, Jungmyung;Choi, Sooyoung;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권4호
    • /
    • pp.51-56
    • /
    • 2020
  • In order to increase thrust of the space launch vehicle, liquid oxygen as an oxidizer and kerosene or liquid hydrogen as a fuel are generally used. The oxidizer tank and fuel tanks are manufactured by composite materials such as CFRP (Carbon Fiber Reinforced Plastic) to increase pay load. The thermal stress of the cryogenic propellant tank should be considered because it has large temperature gradient. In this study, to confirm the design integrity of the oxidizer tank of liquid oxygen, a numerical analysis was conducted on the thermal stress and temperature distribution of the tank for various charging speed of the cryogenic fluid from 100 ~ 900 LPM taking into account the evaporation rate of the liquid nitrogen by convective heat transfer outside the tank and boiling heat transfer inside the tank. The thermal stress was also calculated coupled with the temperature distribution of the CFRP tank. Based on the analysis results, the charging speed of the LN2 can majorly affects the charging time and the resultant thermal stress.

커스프 균열에 대한 열응력세기 계수의 경계요소해석 (Bounary Element Analysis of Thermal Stress Intensity Factors for Cusp Cracks)

  • 이강용;조윤호
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.119-129
    • /
    • 1990
  • 본 연구에서는 선적분화 된 체적력항을 갖는 경계요소법을 이용하여, Griffi- th균열에 대한 열응력세기계수를 구하여 Sumi의 결과와 비교 검토하고, 유무한체내의 대칭 입술형및 대칭 익형 커스프균열들(symmetric lip and airfoil cusp cracks)의 열 응력세기계수를 균열묘면이 단열된 경우와 일정 온도로 유지된 경우에 대해 계산하고 자 한다.

용접 잔류음력을 고려한 강구조물의 피로강도평가 (A Numerical Estimation of Fatigue Strength of Welded Steel Structures with Residual Stresses)

  • 정흥진;유병찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.265-270
    • /
    • 2007
  • According to previous research, welding-induced residual stresses in steel structures can significantly affect the fatigue behaviour. Usually, high tensile residual stresses up to the yield strength are conservatively assumed at the weld toes. This conservative assumption can result in misleading fatigue assessments. Thee welding-induced residual stresses need be known in advance for a reliable fatigue assessment, which becomes possible to an increasing extent by numerical welding simulation. In this study, a fatigue Analysis technique for steel structures with welding induced residual stress is presented. First, We calculate the history of temperature according with welding process. Secondly, residual stress with a welding thermal history was evaluated by non-linear thermal stress analysis and lastly, fatigue strength is estimated with modified Goodman equation which can consider the effect of mean stress level.

  • PDF

가압열충격에 대한 원자로 용기의 확률론적 파괴역학해석 - 잔류응력 및 파괴인성곡선의 영향 - (Probabilistic Fracture Mechanics Analysis of Reactor Vessel for Pressurized Thermal Shock - The Effect of Residual Stress and Fracture Toughness -)

  • 정성규;진태은;정명조;최영환
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.987-996
    • /
    • 2003
  • The structural integrity of the reactor vessel with the approaching end of life must be assured for pressurized thermal shock. The regulation specifies the screening criteria for this and requires that specific analysis be performed for the reactor vessel which is anticipated to exceed the screening criteria at the end of plant life. In case the screening criteria is exceeded by the deterministic analysis, probabilistic analysis must be performed to show that failure probability Is within the limit. In this study, probabilistic fracture mechanics analysis of the reactor vessel for pressurized thermal shock is performed and the effects of residual stress and master curve on the failure probability are investigated.

차량 화재 위치를 고려한 콘크리트 교량의 손상 영향 평가 (Evaluation of Damage on a Concrete Bridge Considering the Location of the Vehicle Fire)

  • 박장호;김성수
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.80-87
    • /
    • 2013
  • Heat transfer analysis and thermal stress analysis for the concrete bridge was performed in order to investigate the damage of the concrete bridge by the fire of the vehicle. Changes in material properties, such as thermal conductivity, specific heat, density, elasticity, caused by temperature rise were considered. Heat transfer analysis and thermal stress analysis were performed according to the various location of the fire by ABAQUS. From the comparison of the numerical results, the degree of structural damage for the concrete bridge was investigated and considerations for the design of a concrete bridge against fire were identified.

제안된 알루미늄 복합체 제동 디스크 형상의 열응력 해석 (A Thermal Stress Analysis for Suggested Shape of Al Hybrid Brake Disc)

  • 임충환;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.283-288
    • /
    • 2011
  • The high heat resistant material for brake disc is required for higher speed trains. Although Aluminum is very expensive, it which has high thermal conductivity and low density has been adapted to high performance light-weight brake disc. In this study, we carry out the thermal stress analysis for suggested shape of Al hybrid brake disc which was designed to meet the optimal point between a performance and economic side. And we compare the results from the analysis to results of conventional disc at the same braking speed. The result show that the temperature on braking surface of Al hybrid disc is lower than the temperature on conventional disc surface, whereas the maximum thermal stress is larger than stress on conventional disc.

  • PDF

열탄성 거동을 나타내는 다층 실린더의 최적설계 (Optimum Design of Thermoelastic Multi-Layer Cylindrical Tube)

  • 조희근;박영원
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.179-188
    • /
    • 2000
  • Multi-disciplinary optimization design concept can provide a solution to many engineering problems. In the field of structural analysis, much development of size or topology optimization has been achieved in the application of research. This paper demonstrates an optimum design of a multi-layer cylindrical tube which behaves thermoelastically. A multi-layer cylindrical tube that has several different material properties at each layer is optimized within allowable stress and temperature range when mechanical and thermal loads are applied simultaneously. When thermal loads are applied to a multi-layer tube, stress phenomena become complicated due to each layer's thermal expansion and the layer thicknesses. Factors like temperature; stress; and material thermal thicknesses of each tube layer are very difficult undertaking. To analyze these problems using an efficient and precise method, the optimization theories are adopted to perform thermoelastic finite element analysis.

  • PDF

세라믹/금속접합재의 고온피로에 따른 접합계면의 응력분포 (Stress distribution of near the interface on high temperature fatigue in ceramic/metal bonded joints)

  • 박영철;허선철;윤두표;김광영
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.106-119
    • /
    • 1996
  • The ceramic has various high mechanical properties such as heat, abrasion, corrosion resistance and high temperature strength compared with metal. It also has low speciffic weight, low thermal expansibillity, low thermal conductivity. However, it could not be used as structural material since it is brittle and difficult for the machining. Therefore, there have been many researches to attempt to join ceramic with metal which is full of ductillity in order to compensate the weakness of ceramic.The problem is that residual stress develops around the joint area while the ceramic/metal joint material is cooled from high joining temperature to room temperature due to remarkable difference of thermal expansion coefficients between ceramic and metal. Especially, the residual stress at both edges of the specimen reduces the strngth of joint to a large amount by forming a singular stress field. In this study, two dimensional finite element method is attempted for the thermal elastic analysis. The joint residual stress of ceramic/metal developed in the cooling process is investigated and the change of joint residual stress resulted from the repetitive heat cycle is also examined. In addition, it is attempted to clarify the joint stress distribution of the case of tensile load and of the case of superposition of residual stress and actual loading stress.

  • PDF