• 제목/요약/키워드: Thermal Stress Analysis

검색결과 1,536건 처리시간 0.035초

열탄소성 해석에 의한 원주용접 열변형에 대한 연구 ((A Study on the Thermal Deformation of Circumferential Welding by Thermal Elasto-Plastic Analysis.))

  • 김용섭;정충훈;김백현
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.238-246
    • /
    • 2001
  • Residual stresses and thermal deformation of a structure due to welding are very imfortant factors for a weld design. It has been carried therretical analysis to invesitigate influence of heat flux to residual stresses and thermal deformation producted by curcumferential welding. Temperature,stresses and deformationn are obtain as a function of circumferentisl drgree and distance from welding center line. These result can applicate to predict and remove the deformation or residual stresses built up by welding.

  • PDF

열적 제한요소를 고려한 열회수 증기발생기의 시동 특성 해석 (Analysis of Start-up Characteristics of a Heat Recovery Steam Generator Considering Thermal Constraints)

  • 김영일;김동섭;김재환;노승락;고상근
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1410-1417
    • /
    • 1999
  • A thorough understanding of the transient behavior during start-up is essential in the design and operation of the heat recovery steam generator(HRSG). During this period of time, material that is exposed to high temperature and experiences a large temperature variation is subject to high thermal stress. In this work, a transient formulation of the HRSG is constructed including the estimation of the thermal stress and fatigue of the drum wall. Start-up behavior of a single-pressure HRSG is analyzed and the effect of bypassing part of the gas turbine exhaust flow on the thermal stress evolution is examined. It is found that the modulation of the gas flow rate using a bypass damper is very useful in view of reducing the thermal stress of the drum and ensuring the fatigue lifetime.

엔진 배기매니폴드의 열응력 발생에 관한 설계 인자들의 이론적 연구 (Theoretical Study of Design Parameters for the Thermal Stress in Engine Exhaust Manifold)

  • 최복록
    • 한국기계가공학회지
    • /
    • 제6권1호
    • /
    • pp.50-56
    • /
    • 2007
  • Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from the fact that thermal expansions of the runners are restricted by inlet flange clamped to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Since the failure of an exhaust manifold is mainly caused by geometric constraints between the cylinder head and the manifold, the thermal stress can be controlled by geometric factors. The generic geometric factors include the inter distance (2R), the distance from the head to the outlet (L), the tube diameter(d) and the tube thickness (t). This criteria based on elastic analysis up to onset of yield apparently indicate that the pre-stress also reduces the factor; however, high temperature relaxation may reduce this effect at later operation stage.

  • PDF

고온.고압용 벨로우즈 실 밸브의 유동 특성 및 열응력 해석 (Thermal Stress Analysis and Flow Characteristics of a Bellows-Seal Valve for High Pressure and Temperature)

  • 김광수;이종철;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제8권6호
    • /
    • pp.40-46
    • /
    • 2005
  • Because of design and manufacturing costs, it is important to predict an expected life of bellows with component stresses of bellows as its design factors and material characteristics. In this study, numerical analyses are carried out to elucidate the thermal and flow characteristics of the bellows-seal gate and globe valves for high temperature (max. $600^{\circ}C$) and for high pressure (max. $104 kgf/cm^2$) conditions. Using commercial codes, FLUENT, which uses FVM and SIMPLE algorithm, and ANSYS, which uses FEM, the pressure and temperature fields are graphically depicted. In addition, when bellows have an axial displacement, thermal stress affecting bellows life is studied. The pressure and temperature values obtained from the flow analyses are adopted as the boundary conditions for thermal stress analyses. As the result of this study, we got the reasonable coefficients for valve and thermal stress for bellows, compared with existing coefficients and calculated values.

Optimum time-censored ramp soak-stress ALT plan for the Burr type XII distribution

  • Srivastava, P.W.;Gupta, T.
    • International Journal of Reliability and Applications
    • /
    • 제15권2호
    • /
    • pp.125-150
    • /
    • 2014
  • Accelerated life tests (ALTs) are extensively used to determine the reliability of a product in a short period of time. Test units are subject to elevated stresses which yield quick failures. ALT can be carried out using constant-stress, step-stress, progressive-stress, cyclic-stress or random-stress loading and their various combinations. An ALT with linearly increasing stress is ramp-stress test. Much of the previous work on planning ALTs has focused on constant-stress, step-stress, ramp-stress schemes and their various combinations where the stress is generally increased. This paper presents an optimal design of ramp soak-stress ALT model which is based on the principle of Thermal cycling. Thermal cycling involves applying high and low temperatures repeatedly over time. The optimal plan consists in finding out relevant experimental variables, namely, stress rates and stress rate change points, by minimizing variance of reliability function with pre-specified mission time under normal operating conditions. The Burr type XII life distribution and time-censored data have been used for the purpose. Burr type XII life distribution has been found appropriate for accelerated life testing experiments. The method developed has been explained using a numerical example and sensitivity analysis carried out.

  • PDF

평면 연삭 가공시 발생하는 연삭열에 관한 연구 -해석적 모델-

  • 김동길;남원우;이상조
    • 한국정밀공학회지
    • /
    • 제18권1호
    • /
    • pp.187-194
    • /
    • 2001
  • The objective of this study is to develop a model for the grinding process for predicting the temperature, thermal stress and thermal deformation. The thermal load during grinding is modeled as uniformly distributed, 2D heat source moving across the surface of elastic half space, which is insulated or subjected to convective cooling. That non-dimensional temperature distribution, non-dimensional longitudinal stress distribution and non-dimensional thermal deformation distribution are calculated with non-dimensional heat source half width and non-dimensional heat transfer coefficient. Finite element models are developed to simulate moving heat source, which is modeled as uniformly or triangularly distributed, the FEM simulation is compared with numerical solution.

  • PDF

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.

화재 안전용 볼밸브의 열·구조 연성해석 (Thermal-structural Coupled Field Analysis for Fire Safety Type Ball Valve)

  • 김시범;이준호;이권희;전락원;도태완
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.28-32
    • /
    • 2011
  • The safety of transporting equipment in a cryogenic condition is one of important problems under the circumstances that the application weight of natural gas is gradually increasing. As a larger disaster may be generated by leakage of oil or gas from valves in case of fire occurrence of a ship, the present research applied a numerical analysis method on thermal stress distribution and deformation, etc. to the design of ball valves satisfying fire safety test's specification(API607) to prevent this. In addition, the present research progressed fire safety tests and compared the test result with numerical analysis results. The Max stress by parts was confirmed through thermal analysis of major parts to evaluate safety. The fire safety test was progressed according to the regulation of API607.

FEM을 이용한 벤틸레이티드 브레이크 디스크의 열균열 현상에 관한 연구 (A Study on Thermal Cracking of Ventilated Brake Disk of a Car Using FEM Analysis)

  • 김호경;정진성;최명일;이영인
    • Tribology and Lubricants
    • /
    • 제21권2호
    • /
    • pp.63-70
    • /
    • 2005
  • This study presents the thermal cracking on a commercial vehicle ventilated brake disk. Distributions of temperature and thermal stress of the disk were analysed, using FEM analysis, under the several driving conditions with actual vehicle specifications. The results from the fatigue tests on the disk material were compared with those from FEM analysis. In case of deceleration of 0.6 g with initial vehicle speed of 97, 140, and 160 km/h, the maximum compressive stress at the disk surface of disk due to braking was 224, 318, and 362 MPa, respectively. It was estimated that each damage fraction of 0.00005, 0.00050, 0.00136 per full stop was imposed on the brake disk in case of deceleration of 0.6 g with initial vehicle speed of 97, 140, and 160 km/h, respectively.

Thermal shock behaviors of TiN coatings on Inconel 617 and Silicon wafer substrates with finite element analysis method

  • Lee, Ki-Seuk;Jeon, Seol;Cho, Hyun;Lee, Heesoo
    • 한국결정성장학회지
    • /
    • 제26권2호
    • /
    • pp.67-73
    • /
    • 2016
  • The degradation behaviors of TiN coating layers under thermo-mechanical stress were investigated in terms of comparison of finite element analysis (FEA) and experimental data. The coating specimen was designed to quarter cylinder model, and the pulsed laser ablation was assumed as heat flux condition. The FEA results showed that heat accumulation at the center of the laser-ablated spot occurred and principle stress was concentrated at the lower region of the coating layer. The microstructural observation revealed that surface melting and decrease of the coating thickness occurred in the TiN/Inconel 617 and the interfacial cracks formed in the TiN/Si. The delamination was caused by the mechanical stress from the center to the outside of the ablated spot as the FEA results expected. It was considered that the improvement of the thermal shock resistance was attributed to higher thermal conductivity of Si wafer than that of Inconel 617.