• Title/Summary/Keyword: Thermal Storage

Search Result 1,412, Processing Time 0.03 seconds

Experimental Study on the Thermal Storage Efficiency Through Variable Porous Mainfolds in a Test Storage Tank (실험 저장조내의 유입구 형상변화에 따른 열 저장효율에 관한 실험적 연구)

  • Pak, Ee-Tong;Hwang, Sung-Il;Choi, Young-Il
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.37-43
    • /
    • 1989
  • This paper dealt with thermal storage efficiency due to difference ($T_{\infty}-Ti$) between the mean temperature of water in the storage tank [$0.5m{\times}0.5m{\times}1.0m$] and the temperature of water flowing into the tank, flow rate of water flowing into the tank and shape of porous manifold which water flow into the tank through. As results of experiments; (1) When the flow rate was constant and the diameter of porous section decreased by 8mm, 6mm, and 4mm, the thermal storage efficiency increased. (2) When the diameter of porous section was constant and the difference ($T_{\infty}-Ti$) between the mean temperature of water in the storage tank and the temperature of water flowing into the tank increased by -30, -20, -10, 5, 10, 15 ($^{\circ}C$), the thermal storage efficiency increased. (3) When the($T_{\infty}-Ti$) was constant and the flow rate decreased by 0.8, 0.4, 0.25(LPM), the thermal storage efficiency increased. (4) When the shape of porous section was rigid, the thermal storage efficiency was the most effective, and with establishing flexible porous section or mesh, the effective thermal storage efficiency was obtained.

  • PDF

Performance Simulation and Analysis of the Solar Thermal Storage System Using Heat Pipe (히트파이프를 사용한 태양열 축열시스템의 성능모사 및 해석)

  • Jung, Eui-Guk;Boo, Joon-Hong;Kim, Jong-Kyu;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.80-85
    • /
    • 2009
  • Mathematical modeling and performance simulation results were shown for the solar thermal storage system which used heat pipe. The thermal storage system was composed of thermal storage tank and charging/discharging heat exchanger with one by the heat pipes. Heat pipe heat exchanger was attached to system, and could carry out charging and discharging to thermal storage tank at the same time. Height of the thermal storage tank was 600 mm, and that of the charging/discharging heat exchanger was 400 mm. Length of the heat pipe was the same as the total height of thermal storage system, and outer and inner diameter were 25.4 mm(O.D.) and 21.4 mm(I.D.) respectively. Diameter of the circular was 43 mm(O.D.), and fin geometries were considered as the design parameters. High temperature phase change material(PCM), $KNO_3$ and low temperature PCM, $LINO_3$ were charged to storage tank to adjust working temperature. Total size of thermal storage system able to get heat capacity more than 500 kW was calculated and the results were shown in this study. Number of heat pipe was required more than maximum 500, and total length of thermal storage system was calculated to the more than maximum 3 m at various condition.

  • PDF

A Study on Performance of Seasonal Borehole Thermal Energy Storage System Using TRNSYS (TRNSYS를 이용한 Borehole 방식 태양열 계간축열 시스템의 성능에 관한 연구)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.37-47
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a glass greenhouse was analyzed numerically. For this study, the gardening 16th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And, the heating load of the glass greenhouse selected was 576 GJ. BTES (Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modeling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump, controller. As a result of the analysis, the energy of 928 GJ from the flat plate solar collector was stored into BTES system and 393 GJ of energy from BTES system was extracted during heating period, so that it was confirmed that the thermal efficiency of BTES system was 42% in 5th year. Also since the heat supplied from the auxiliary boiler was 87 GJ in 5th year, the total annual heating demand was confirmed to be mostly satisfied by the proposed system.

Dynamic Analysis of Cool Thermal Storage Air Conditioning System (빙축열 에어컨의 동적 사이클 해석)

  • Koh, Jae-Yoon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • In this study, dynamic characteristics analysis of AC system is investigated using a cool thermal storage system. A analysing program for cool thermal storage AC system is developed. The performances are studied by several variables and dynamic characteristics. Comparing the result at conventional operation condition with that at the condition using ice storage system, this study showed the effects of the sub cooled degree, superheated degree, efficiency of compressor and evaporating temperature. At the condition using thermal storage system, the thermal storage process was operated during midnight being not needed the cooling of the AC unit through the continuous running of the condenser. The refrigerant was sub-cooled using stored energy after being discharged from the air source condenser during the daytime. The COP was increased owing to the sub-cooling of refrigerant during daytime, thus the power consumption was effectively decreased.

Study on the Performance Testing of the Closed Ice Thermal Energy Storage System using Screw Capsules (스크류 캡슐형 밀폐식 빙축열시스템의 성능시험에 관한 연구)

  • Kim, Kyung-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.39-45
    • /
    • 2006
  • The decrease in the summer peak electric load in our country is very important. The government has arranged and implemented a lot of support policies and statutes to decrease the peak electric load. And the ice thermal energy storage system is known as one of the alternatives. The purpose of this paper is to evaluate the efficiency and thermal characteristics of the closed ice thermal energy storage system using screw capsules. The measured thermal energy storage density is about 18.4 USRT-h/m3 (=232.9 MJ/m3), which is higher than 13.0 USRT-h/m3 (=164.6 MJ/m3), a low criterion of normal performance. And The efficiency of the discharging process and the total energy utilization is 96.2% and 2028.4 kcal/kWh respectively.

Design of a Controller for the Heat Capacity of Thermal Storage Systems Using Off-Peak Electricity (축열식 심야전력기기를 위한 축열량 제어기 설계)

  • Lee, Eun-Uk;Yang, Hae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1211-1217
    • /
    • 2001
  • This paper presnts a controller for the heat capacity of thermal storage systems using off-peak electricity which is composed of an identifier using neural networks and a storage time adjuster in order to store exactly the required thermal energy without loss. Since thermal storage systems have nonlinear characteristics and large time constant, even if we predict the heating load accurately, it is very difficult to store exactly the required thermal energy. Thus, in the neural network for the identifier, the adaptive learning rate for high learning speed and bit inputs based on state changes of thermal storage power source are used. Also a hardware for the controller using a microprocessor is developed. The performance of the proposed controller is shown by experiment.

  • PDF

A Study on Transient Thermal Behavior During the Charging Process in a Stratified Water Storage Tank and Its Storage Efficiency (성층 온수 저장 중 과도 열거동과 축열효율에 관한 연구)

  • Pak, E.T.;Chu, Y.J.;Kim, Y.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.13-21
    • /
    • 1997
  • In this study, the theoretical equation of thermal storage efficiency was established to applied long term hot water storage system. The, effective thermal diffusivity and storage efficiency were, measured through the experiment to predict the degree of mixture in thermal storage tank. The effective thermal diffusivity was inversely preportional to the storage efficiency. The most effective storage efficiency was obtained under condition of low flow rate and using the perforated distributor.

  • PDF

Experimental Study of the Effect on Cabin Thermal Comfort for Cold Storage Systems in Vehicles (축냉 시스템이 차 실내 열 쾌적성에 미치는 영향에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.428-435
    • /
    • 2015
  • This paper presents the experimental study of cabin thermal comfort using a cold storage heat exchanger in a vehicle air-conditioning system. Recent vehicle-applied ISG functions for fuel economy and emission, but when vehicles stop, compressors in the air-conditioning system stop, and the cabin temperature sharply increases, making passengers feel thermal discomfort. This study conducts thermal comfort evaluation in the vehicle, which is applied to a cold storage system for the climate control wind tunnel test and the vehicle fleet road test with various airflow volume rates and ambient temperatures blowing to the cold storage heat exchanger. The experimental results, in the cold storage system, air discharge temperature is $3.1-4.2^{\circ}C$ lower than current air-conditioning system when the compressor stops and provides cold air for at least 38 extra seconds. In addition, the blowing airflow volume to the cold storage heat exchanger with various ambient temperature was examined for the control logic of the cold storage system, and in the results, the airflow volume rate is dominant over the outside temperature. For this study, a cold storage system is economically useful to keep the cabin at a thermally comfortable level during the short period when the engine stops in ISG vehicles.

The Fluid Flow and Heat Storage Performance in Thermal Storage Bed using Gravel (자갈축열층의 공기유동 및 축열성능)

  • Lee, Jong Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • Fossil energy is needed for a whole year greenhouse cropping due to climate in South Korea. Because the most of the fossil energy resources is imported, it is necessary to develop technology to be able to reduce the energy cost in order to manage greenhouse profitably. The greenhouse commonly consume less amount of energy as compared to other industrial sectors. Replacement of fossil fuel with solar thermal storage, therefore, can be an economical as well as environmentally sustainable option for greenhouse heating. The fluid flow, heat storage and radiation characteristic of the gravel bed model were analyzed to provide basic data for design of the experimental solar heated greenhouse with underground thermal storage using gravel. The air flow velocity in the gravel storage bed was proven to be affected from the capacity of circulation fan and the circulation method and the positive pressure method was proven to be the best among the different air circulation methods. The initial air temperature of the thermal storage bed of 1.2 m $wide{\times}9$ m $long{\times}0.9$ m deep was $10^{\circ}C$. After the thermal storage bed is heated by air of the mean temperature $4^{\circ}C$ during 9 hours, the temperature has increased about $20.3^{\circ}C$ and the storage of heat was about 33,000 kcal. The important factors should be taken into consideration for design of the solar heated greenhouse with underground thermal storage using gravel are insulation of rock storage, amount of storing heat, inflow rate and direction of inlet and outlet duct.

Fanless Thermal Design for the Information Storage System Using CAE Technique (CAE 기법을 이용한 정보저장시스템의 Fanless 열설계)

  • Ryu Ho Chul;Dan Byung Ju;Choi In Ho;Kim Jin Yong
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.246-247
    • /
    • 2005
  • This study suggested fanless thermal design using CAE technique for the information storage system under the serious thermal problem. At first, main heat flow was controlled by CAE based fanless heat sink design not to influence sensitive optical pick-up sensor. Then, vent parametric studies found a thermal solution about highly concentrated case top heat due to fanless. These CAE results were verified by experimental methods. As a consequence of newly designed thermal path, thermal specification of optical pick-up sensor was satisfied and fanless thermal design for the information storage system was achieved.

  • PDF