• Title/Summary/Keyword: Thermal Spectrum

Search Result 400, Processing Time 0.037 seconds

DNN Based Multi-spectrum Pedestrian Detection Method Using Color and Thermal Image (DNN 기반 컬러와 열 영상을 이용한 다중 스펙트럼 보행자 검출 기법)

  • Lee, Yongwoo;Shin, Jitae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.361-368
    • /
    • 2018
  • As autonomous driving research is rapidly developing, pedestrian detection study is also successfully investigated. However, most of the study utilizes color image datasets and those are relatively easy to detect the pedestrian. In case of color images, the scene should be exposed by enough light in order to capture the pedestrian and it is not easy for the conventional methods to detect the pedestrian if it is the other case. Therefore, in this paper, we propose deep neural network (DNN)-based multi-spectrum pedestrian detection method using color and thermal images. Based on single-shot multibox detector (SSD), we propose fusion network structures which simultaneously employ color and thermal images. In the experiment, we used KAIST dataset. We showed that proposed SSD-H (SSD-Halfway fusion) technique shows 18.18% lower miss rate compared to the KAIST pedestrian detection baseline. In addition, the proposed method shows at least 2.1% lower miss rate compared to the conventional halfway fusion method.

Flow Characteristics of the Boundary Layer Developing over a Turbine Blade Suction Surface (터빈 동익 흡입면에서 발달하는 경계층의 유동특성)

  • Chang, Sung Il;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.795-803
    • /
    • 2015
  • The boundary layer developing over the suction surface of a first-stage turbine blade for power generation has been investigated in this study. For three locations selected in the region where local thermal load changes dramatically, mean velocity, turbulence intensity, and one-dimensional energy spectrum are measured with a hot-wire anemometer. The results show that the suction-surface boundary layer suffers a transition from a laminar flow to a turbulent one. This transition is confirmed to be a "separated-flow transition", which usually occurs in the shear layer over a separation bubble. The local minimum thermal load on the suction surface is found at the initiation point of the transition, whereas the local maximum thermal load is observed at the location of very high near-wall turbulence intensity after the transition process. Frequency characteristics of turbulent kinetic energy before and after the transition are understood clearly from the energy spectrum data.

Spectral analysis for thermal discharge of Hadong Power Plant (하동화력 발전소 온배수에 대한 Spectrum 분석)

  • Park, Il-Heum;Lee, Geun-Hyo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.435-440
    • /
    • 2006
  • In order to understand changes of water temperature for thermal discharge of Hadong power plant in Gwangyang and Jinju Bay, it was analyzed for temperature data of representative season by MEM(Maximum entropy method) that is one of the spectral analysises. And due to understand effect of thermal discharge at each point, analyzed spectral data showed reactive energy rate of reference point by calculating energy from 24 time period to height frequency zone. As a result of spectral analysis, it showed that there were 9 points which are largely effected, 7 points which will be estimated, 6 points which is difficult to estimate, 14 points which rarely effected by thermal discharge.

  • PDF

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

Use of Speckle Pattern for Monitoring Thermal Energy Behavior of Battery Cathode

  • Kim, Byungwhan;Jang, Junyoung
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.396-400
    • /
    • 2016
  • Laser speckle patterns were used to monitor variations of thermal voltages of a cathode during a battery discharge. Discharge voltages measured with an oscilloscope were utilized as a figure of merit of thermal voltages in Zn metal. Using an optical imaging system, speckle patterns were taken for zinc metal surface over a time period of 3 minutes. Pixel sum distribution functions (PSDFs) were extracted from speckle patterns. Accumulated pixel sums quantified from PSDFs over an optimized grayscale range strongly correlated with discharge voltages. This suggested that dark matter or particles may have the capability of both absorbing and radiating thermal energies simultaneously. The black body-like properties were able to be validated by identifying coincidences with distinct features of a black body spectrum. The pixels belonging to the grayscale range were confirmed to represent dark matter of a speckle pattern. It was clear that dark matter was part of surface plasmon carriers. The proposed sensing system can be applied to monitor thermal energy variations in any material.

Enhancing Thermal Conductivity in Epoxy Composites with Functionalized Boron Nitride Nanosheets

  • Yang Soo Kim;Ik-Tae Im;Jong Seok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.503-510
    • /
    • 2023
  • This comprehensive study delves into the intricate process of exfoliating and functionalizing boron nitride nanosheets (BNNSs) extracted from hexagonal boron nitride (h-BN), and meticulously explores their potential application within epoxy composites. The extensive research methodology encompasses a sequence of treatments involving hydrothermal and sonication processes aimed at augmenting the dispersion of BNNSs in solvents. Leveraging advanced analytical techniques such as Raman spectroscopy, X-ray diffraction, and FTIR spectroscopy, the study rigorously analyzes a spectrum of changes in the BNNS's properties, including layer count variations, interlayer interactions, crystal structure modifications, and the introduction of functional groups. The research also rigorously evaluates the impact of integrating BNNSs, specifically glycidyl methacrylate (GMA)-functionalized BNNSs, on the thermal conductivity of epoxy composites. The conclusive findings exhibit notable enhancements in thermal properties, predominantly attributed to the enhanced dispersion of fillers and enhanced interactions within the epoxy matrix. This pioneering work illuminates the wide potential of functionalized BNNSs for significantly enhancing the thermal conductivity of epoxy composites, paving the way for advanced materials engineering and practical applications.

A Study on the Improvement of Image Quality for a Thermal Imaging System with focal Plane Array Typed Sensor (초점면 배열 방식 열상 카메라 시스템의 화질 개선 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.27-31
    • /
    • 2000
  • Thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main Part of the system is thermal camera in which a focal plane array typed sensor is introduced The sensor detects mid-range infrared spectrum or target objects and then it output generic video signal which should be processed to form a thermal image frame. A digital signal processor(DSP) in the system inputs analog to digital converted data. performs algorithms to improve the thermal images and then outputs the corrected frame data to frame buffers for NTSC encoding and for digital outputs.. To enhance the quality of the thermal images, two point correction method is applied. Figures indicate that the corrected thermal images are much improved.

  • PDF

Some Peculiarities of Photo-structural Transformations in Amorphous Chalcogenide Glassy Semiconductor Films

  • Prikhodko, O.;Almasov, N.;Korobova, Natalya
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.587-590
    • /
    • 2011
  • The absence of deep traps for electrons in the spectrum of $As_{40}Se_{30}S_30$ localized states films obtained by ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous $As_{40}Se_{30}S_30$ films of chalcogenide glassy semiconductors, obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

Using ASTER TIR imagery to identify Heat Islands: A case study of New Jersey (ASTER 열적외선 이미지를 이용한 열섬 현상 탐지: 뉴저지를 사례로)

  • Park, Gwang yong;David W. Gwynn;David A. Robinson
    • Proceedings of the KGS Conference
    • /
    • 2004.05a
    • /
    • pp.56-56
    • /
    • 2004
  • The ability to detect urban heat islands in satellite imagery is a function of spatial, spectral, and temporal resolutions. Imagery from the satellite-mounted Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor acquired since December 1999 allows us to view the Earth at a higher spectral resolution in the thermal infrared (TIR) portion of the electromagnetic spectrum than most other satellite systems (e.g., AVHRR, Landsat TM). (omitted)

  • PDF

Optically Detected Magnetic Resonance with Nitrogen-Vacancy Spin Ensemble in Diamond

  • Lee, Hyun Joon;Shim, Jeong Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.40-45
    • /
    • 2018
  • We report Optically-Detected Magnetic Resonance (ODMR) study on Nitrogen-Vacancy (NV) centers in diamond. The experiment can easily be conducted with basic optics and microwave components. A diamond crystal having a high-density NV center is suitable for the ODMR study. The magnetic field dependence of ODMR spectrum allowed us to determine the orientation of the diamond crystal. In addition, we measured the variation of the ODMR spectrum as a function of the excitation laser power. Thermal heating induced by optical absorption caused the monotonic decrease of zero field splitting. The contrast of the ODMR peak, however, increased and, then, began to decrease, indicating the optimal laser power for recording the ODMR spectrum.