• Title/Summary/Keyword: Thermal Release Tape

Search Result 4, Processing Time 0.018 seconds

Study on the Optimal Release Condition of Wafer Level Molding Process using Plasma Surface Treatment Method (플라즈마 표면처리 방법을 이용한 웨이퍼레벨 몰딩 공정용 기판의 최적 이형조건 도출)

  • Yeon, Simo;Park, Jeonho;Lee, Nukkyu;Park, Sukhee;Lee, Hyejin
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2015
  • In wafer level molding progress, the thermal releasing failure phenomenon is shown up as the important problem. This phenomenon can cause the problem including the warpage, crack of the molded wafer. The thermal releasing failure is due to the insufficiency of adhesion strength degradation of the molding tape. To solve this problem, we studied experimental method increasing the release property of the molding tape through the plasma surface treatment on the wafer substrate. In this research, the vacuum plasma treatment system is used for release property improvement of the molding tape and controls the operating condition of the hydrophilic($O_2$, 100kW, 10min) and hydrophobic($C_2F_6$, 200kW, 10min). In order to perform the peeling test for measuring the releasing force precisely, we remodel the micro scale material property evaluation system developed by Korea institute of industrial technology. In case of hydrophilic surface treatment on the wafer substrate, we can figure out the releasing property of molding tape increase. In order to grasp the effect that it reaches to the release property increase when repeating the hydrophilic treatment, we make an experiment with twice treatment and get the result to increase about 12%. We find out the hydrophilic surface treatment method using plasma can improve releasing property of molding tape in the wafer level molding process.

Large Area Wafer-Level High-Power Electronic Package Using Temporary Bonding and Debonding with Double-Sided Thermal Release Tape (양면 열박리 테이프 기반 임시 접합 공정을 이용한 대면적 웨이퍼 레벨 고출력 전자패키지)

  • Hwang, Yong-Sik;Kang, Il-Suk;Lee, Ga-Won
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.36-40
    • /
    • 2022
  • High-power devices, such as LEDs and radars, inevitably generate a large amount of heat, which is the main cause of shortening lifespan, deterioration in performance, and failure of electronic devices. The embedded IC process can be a solution; however, when applied to large-area substrates (larger than 8 in), there is a limit owing to the difficulty in the process after wafer thinning. In this study, an 8-in wafer-level high-power electronic package based on the embedded IC process was implemented with temporary bonding and debonding technology using double-sided thermal release tape. Good heat-dissipation characteristics were demonstrated both theoretically and experimentally. These findings will advance the commercialization of high-power electronic packaging.

Multilayered Graphene Electrode using One-Step Dry Transfer for Optoelectronics

  • Lee, Seungmin;Jo, Yeongsu;Hong, Soonkyu;Kim, Darae;Lee, Hyung Woo
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • In this study, multilayered graphene was easily transferred to the target substrate in one step using thermal release tape. The transmittance of the transferred graphene according to the number of layers was measured using a spectrophotometer. The sheet resistance was measured using a four-point probe system. Graphene formed using this transfer method showed almost the same electrical and optical properties as that formed using the conventional poly (methyl methacrylate) transfer method. This method is suitable for the mass production of graphene because of the short process time and easy large-area transfer. In addition, multilayered graphene can be transferred on various substrates without wetting problem using the one-step dry transfer method. In this work, this easy transfer method was used for dielectric substrates such as glass, paper and polyethylene terephthalate, and a sheet resistance of ~240 ohm/sq was obtained with three-layer graphene. By fabricating organic solar cells, we verified the feasibility of using this method for optoelectronic devices.

Ultra-Clean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films

  • Kim, Sang Jin;Lee, Bora;Choi, Yong Seok;Kim, Philip;Hone, James;Hong, Byung Hee;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.301.1-301.1
    • /
    • 2016
  • We report an ultraclean, cost-effective, and easily scalable method of transferring and patterning large-area graphene using pressure sensitive adhesive films (PSAFs) at room temperature. This simple transfer is enabled by the difference in wettability and adhesion energy of graphene with respect to PSAF and a target substrate. The PSAF transferred graphene is found to be free from residues, and shows excellent charge carrier mobility as high as ${\sim}17,700cm^2/V{\cdot}s$ with less doping compared to the graphene transferred by thermal release tape (TRT) or poly(methyl methacrylate) (PMMA) as well as good uniformity over large areas. In addition, the sheet resistance of graphene transferred by recycled PSAF does not change considerably up to 4 times, which would be advantageous for more cost-effective and environmentally friendly production of large-area graphene films for practical applications.

  • PDF