• Title/Summary/Keyword: Thermal Properties of Rock Mass

Search Result 21, Processing Time 0.02 seconds

A Numerical Study on the Response of Jointed Rock Mass Due to Thermal Loading of Radioactive Waste (방사성 폐기물의 열하중에 의한 절리암반의 거동에 관한 수치해석적 연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.102-118
    • /
    • 1994
  • Thermomechanical analysis is conducted on the radioactive repository in deep rock mass considering the in-situ stress, excavation and thermal loading of a radioactive waste. Thermomechanical properties of a discontinuous rock mass are estimated by a theoretical method so called sequential analysis. Using the estimated properties as input for finite element analysis, the influence on temperature distribution and thermal stress is analyzed within the scope of 2-dimensional steady state and transient heat transfer and coupled thermal elastic plastic behaviour. Granitic rock mass is taken for this analysis. The analysis is done for two different rock mass conditions, i.e. continuous-homogeneous and highly jointed conditions, for the purpose of comparison. In the case of steady state, the extent of disturbed zone around the storage tunnel due to the heat production of the spent-fuel canister varies depending on the thermomechanical properties of the rock mass. In the case of transient analyses, the response of the jointed rock mass to the thermal loading after radioactive waste disposal varies significantly with time, resulting in dramatic changes in the both size and location of disturbed zone.

  • PDF

The Effect of Rock Joints and Ground Water on the Thermal Flow through Rock Mass (절리 및 지하수가 암반의 열전파 특성에 미치는 영향)

  • 박연준;유광호;신희순;신중호
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.220-228
    • /
    • 2002
  • Thermal flow through jointed rock mass was analyzed by numerical methods. The effect of a single set of joints on the heat conduction was analyzed by one-dimensional model and compared with the analytical solution. When a joint is completely dry, the joint behaves as a thermal break inducing jumps in temperature distribution even at steady state. Therefore when joints are completely dry, individual joint has to be taken into consideration to get a good result. When joints are partially or fully saturated, the thermal conductivity of the joints increases drastically and the jumps in temperature distribution become less severe. Therefore the effect of joint in heat conduction can be well absorbed by continuum anisotropic model whose thermal properties represent overall thermal properties of the intact part and the discontinuities. Since the effect of joints becomes less important as the degree of the saturation increases, the overall thermal response of the rock mass also becomes close to isotropic. Therefore it can be concluded that a great effort has to be made to obtain a precise in-situ thermal properties in order to get a good prediction of the thermal response of a jointed rock mass.

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Numerical Study on Thermo-Hydro-Mechanical Coupling in Rock with Variable Properties by Temperature (암석의 온도의존성을 고려한 열-수리-역학적 상호작용의 수치해석적 연구)

  • 안형준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1997
  • It is necessary to study on thermo-hydro-mechanical effect at rock mass performing project such as radiowaste disposal in deep rock mass. In this study, thermo-hydro-mechanical coupling analysis which is considered interaction and the variation of rock properties induced by temperature increase was performed for the circular shaft when appling temperature of 20$0^{\circ}C$ at the shaft wall. The shaft is diameter of 2 m and under hydrostatic stress of 5 MPa. In the cases, thermal expansion by temperature increase progress from the wall to outward and thermal expansion could induce tensile stress over the tensile strength of rock mass at the wall. When rock properties were given as a function of temperature, thermal expansion increased, tensile stress zone expanded. Lately, water flow is activated by increase of permeability and decrease of viscosity.

  • PDF

A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses (등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF

Transient heat conduction in rock mass around arch shape cold storage cavern and estimation of in-situ thermal properties (아치형 냉동저장공동 주위암반의 비정상상태 열전도 특성 및 열물성 평가)

  • Synn, Joong-Ho;Park, Yeon-Jun;Kim, Ho-Yeong;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • The characteristics of heat conduction for the heat source boundary like an arch shape cavern are different from those for the semi-infinite or circular boundary which can be driven theoretically. A new form of transient heat conduction equation in rock mass around the arch shape cavern is evaluated with analyzing the pattern of the rock temperature distribution measured at the cold storage pilot plant. The new equation, which is driven by adopting a shape function, $SF=\sqrt{logx_0/log(x_0+x)}$ to the solution for a semi-infinite boundary, has the semi-radial form of temperature variation with distance. And, thermal properties of rock mass are estimated by comparing the rock temperature distributions by this equation with those by measurement. Thermal conductivity and specific heat of rock mass are estimated as giving the difference of 20~25% compared to those of laboratory scale. This difference seems to be caused by discontinuity like joint and water content in rock mass.

  • PDF

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Numerical Verification for Plane Failure of Rock Slopes Using Implicit Joint-Continuum Model (내재적 절리-연속체 모델을 이용한 암반사면 평면파괴의 수치해석적 검증)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.125-132
    • /
    • 2020
  • Embedded joints in the rock mass are a major constituent influencing its mechanical behavior. Numerical analysis requires a rigorous modeling methodology for the rock mass with detailed information regarding joint properties, orientation, spacing, and persistence. This paper provides a mechanical model for a jointed rock mass based on the implicit joint-continuum approach. Stiffness tensors for rock mass are evaluated for an assemblage of intact rock separated by sets of joint planes. It is a linear summation of compliance of each joint sets and intact rock in the serial stiffness system. In the application example, kinematic analysis for a planar failure of rock slope is comparable with empirical daylight envelope and its lateral limits. Since the developed implicit joint-continuity model is formulated on a continuum basis, it will be a major tool for the numerical simulations adopting published plenteous thermal-hydro-chemical experimental results.

Mechanical Stability Analysis to Determine the Optimum Aspect Ratio of Rock Caverns for Thermal Energy Storage (열에너지 저장용 암반 공동의 최적 종횡비 결정을 위한 역학적 안정성 해석)

  • Park, Dohyun;Ryu, Dongwoo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • It is generally well known that the stratification of thermal energy in heat stores can be improved by increasing the aspect ratio (the height-to-width ratio) of the stores. Accordingly, it will be desirable to apply a high aspect ratio so as to demonstrate the good thermal performance of heat stores. However, as the aspect ratio of a store increases, the height of the store become larger compared to its width, which may be unfavorable for the structural stability of the store. Therefore, to determine an optimum aspect ratio of heat stores, a quantitative mechanical stability assessment should be performed in addition to thermal performance evaluations. In the present study, we numerically investigated the mechanical stability of silo-shaped rock caverns for underground thermal energy storage at different aspect ratios. The applied aspect ratios ranged from 1 to 6 and the mechanical stability was examined based on factor of safety using a shear strength reduction method. The results from the present study showed that the factor of safety of rock caverns tended to decrease with the increase in aspect ratio and the stress ratio of the surrounding rock mass was influential to the stability of the caverns. In addition, the numerical results demonstrated that under the same conditions of rock mass properties and aspect ratio, mechanical stability could be improved by the reduction in cavern size (storage volume), which indicates that one can design high-aspect-ratio rock caverns by dividing a single large cavern into multiple small caverns.

Rock Mechanics Site Characterization for HLW Disposal Facilities (고준위방사성폐기물 처분시설 부지에 대한 암반역학 부지특성화)

  • Um, Jeong-Gi;Hyun, Seung Gyu
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.