• 제목/요약/키워드: Thermal Power Plant

검색결과 1,091건 처리시간 0.032초

Application of Superconducting Magnetic Separation for Condenser Water Treatment in Thermal Power Plant

  • Lee, You-Jin;Kwon, Jun-Mo;Baik, Seung-Kyu;Han, Kwang-Soo;Ko, Rock-Kil;Sohn, Myung-Hwan;Ha, Dong-Woo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권2호
    • /
    • pp.21-24
    • /
    • 2011
  • Superconducting high gradient magnetic separation (HGMS) has advantages to treat wastewater because it can generate high magnetic field and achieve rapid purification. In this study superconducting HGMS was applied to remove impurities from the condenser water in thermal power plant. The condenser water contained mainly hematite and maghemite and it was highly magnetized than hematite. In the HGMS tests using a 6-T cryo-cooled Nb-Ti superconducting magnet, the turbidity of the condenser water was effectively reduced up to 99.6% and the result showed better performance than that of the 0.5-T permanent magnet test. The higher magnetic field was applied in the range of 1-6T, the more iron oxides were removed. The effect of magnetic filter configuration on the condenser water treatment was also investigated. Consequently superconducting HGMS system can be applicable to remove iron oxide impurities from condenser water in thermal power plant.

Removal of iron scale from feed-water in thermal power plant by magnetic separation - Introduction to chemical cleaning line -

  • Yamamoto, Junya;Mori, Tatsuya;Hiramatsu, Mami;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijim, Sigehiro
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권2호
    • /
    • pp.6-10
    • /
    • 2018
  • Removal of iron oxide scale from feed-water in thermal power plant can improve power generation efficiency. We have proposed a novel scale removal system utilizing High Gradient Magnetic Separation (HGMS). This system can be applied to high temperature and pressure area. We have conducted the lab-scale model experiments using ${\varphi}50mm$ filters and it demonstrated high removal efficiency in HGMS, but scale-up of the system is required toward practical use. In this study, we conducted a large scale mock-up HGMS experiment. We used the superconducting solenoidal magnet with ${\varphi}400mm$ bore and demonstrated that our HGMS system can achieve sufficient scale removal capacity that is required to introduce into both off-line and on-line system.

원전 Mixing Tee에서의 고주기 열피로 평가 (Evaluation of High Cycle Thermal Fatigue on Mixing Tee in Nuclear Power Plant)

  • 이선기
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.22-29
    • /
    • 2020
  • In nuclear power plants, there is a risk of thermal fatigue in equipment and piping affecting system soundness because the temperature change of the system accompanies in every operation and shutdown. Therefore, in order to prevent the excess of the fatigue limit during the lifetime of plants, the fatigue limit of each piping material is determined in the designing stage. However, there are many cases where equipment or piping is locally subjected to thermal fatigue that is not considered in the design, resulting in damage to the equipment and piping, and failure during operation. Currently, local thermal fatigue generation mechanisms that are not taken into account in the design stage are gradually being identified. In this paper, the effects of the fluid temperature fluctuations on the piping soundness due to the mixing of hot and cold water, one of the local thermal fatigue generating mechanisms, were evaluated.

Development of a Power Plant Simulation Tool with GUI based on General Purpose Design Software

  • Kim Dong Wook;Youn Cheong;Cho Byung-Hak;Son Gihun
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.493-501
    • /
    • 2005
  • A power plant simulation tool ('PowerSim') has been developed with 10 years experience from the development of a plant simulator for efficient modeling of a power plant. PowerSim is the first developed tool in Korea for plant simulation with various plant component models, instructor station function and the Graphic Model Builder (GMB). PowerSim is composed of a graphic editor using general purpose design software, a netlist converter, component models, the scheduler, Instructor Station and an executive. The graphic editor generates a netlist that shows the connection status of the various plant components from the Simdiagram, which is drawn by Icon Drag method supported by GUI environment of the PowerSim. Netlist Converter normalizes the connection status of the components. Scheduler makes scheduling for the execution of the device models according to the netlist. Therefore, the user makes Simdiagram based on the plant Pipe and Instrument Drawing (P&ID) and inputs the plant data for automatic simulating execution. This paper introduces Graphic Model Builder (GMB), instructor station, executive and the detailed introduction of thermal-hydraulic modeling. This paper will also introduce basic ideas on how the simulation Diagram, based on netlist generated from general purpose design software, is made and how the system is organized. The developed tool has been verified through the simulation of a real power plant.

폐열 이용 폐쇄형 해양온도차발전 사이클의 성능 (Performance Analysis of Closed-type OTEC Cycle using Waste Heat)

  • 이호생;정동호;홍석원;김현주
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.80-84
    • /
    • 2011
  • The cycle performance of closed ocean thermal energy conversion (OTEC) system with 50 kW gross power was evaluated to obtain the basic data for the optimal design of OTEC using waste heat such as solar power, discharged heat from condenser of power plant. The basic thermodynamic model for OTEC is Rankine cycle, and the surface seawater and deep seawater were used for the heat source of evaporator and condenser, respectively. The cycle performance such as efficiency, heat exchanger capacity, etc. was analyzed on the variation of temperature increase by waste heat. The cycle efficiency increased and necessary capacity of evaporator and condenser decreased under 50kW gross power with respect to the temperature increase of working fluid. Also, when the temperature increase is about $13.5^{\circ}C$, the heat which can be used is generated. By generator with 0.9 effectiveness under the simulated condition, the cycle efficiency was improved approximately 3.0% comparing with the basic cycle.

통합적 엑서지에 의한 발전 플랜트의 열경제학적 해석 (Thermoeconomic Analysis of Power Plants with Integrated Exergy Stream)

  • 김덕진;이현수;곽호영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.871-878
    • /
    • 2000
  • Exergetic and thermoeconomic analysis were performed for a 500-MW combined cycle plant and a 137-MW steam power plant without decomposition of exergy stream of matter into thermal and mechanical exergies. The calculated costs of electricity are almost same within 0.5% as those obtained by the thermoeconomic method with decomposition of exergy into thermal and mechanical exergies of the combined cycle plant. However for the gas-turbine cogeneration plant having different kinds of products. the difference in the unit costs of products, obtained from the two methodologies is about 2%. Such outcome indicates that the level at which the cost balances are formulated does not affect the result of thermoeconomic analysis, that is somewhat contradictory to that concluded previously.

  • PDF

초본계 바이오매스 활용 석탄발전소 연료전환 모형 경제성분석 연구 (An Economical Analysis on Fuel Switching Model of Coal Power Plant using Herbaceous Biomass)

  • 엄병환;강찬호
    • 한국농공학회논문집
    • /
    • 제61권3호
    • /
    • pp.89-99
    • /
    • 2019
  • The project to utilize kenaf as thermal power plant fuel has a positive effect on the unused energy utilization, greenhouse gas reduction, and farm income. However, it is analyzed that it is difficult to secure economical efficiency because the fuel cost of kenaf is higher than that of power by thermal power plant and Renewable Energy Certification (REC). The project of power generation using kenaf is meet the government's major policies, while government support is essential for securing economical efficiency. As a result of the sensitivity analysis on the ratio of the government subsidies, to secure economical efficiency, the power generation prices using kenaf through the direct financial support of the government indicate that 47% and 76% of kenaf fuel cost are supported by government in case of the Saemangeum reclamation and Gangneung-si, respectively. In the case of the government indirect policy support, if kenaf is included as a renewable energy source of Renewable Energy Portfolio Standard and REC is granted, the economic efficiency of Saemangeum reclamation and Gangneung-si is obtained when REC secured at 1.05 or more and 2.43 or more, respectively. The results of this study are meaningful in that the direct and indirect effects of the government on the development of the herbaceous energy crop, kenaf, were evaluated economically. These results are to suggest the need for demonstration study, but economics analyze and evaluate are necessary based on operational data through the demonstration phase in the future.

Design Of Fuzzy Controller for the Steam Temperature Process in the Coal Fired Power Plant

  • Shin, Sang Doo;Kim, Yi-Gon;Lee, Bong Kuk;Bae, Young Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.187-192
    • /
    • 2004
  • In this paper, we proposed the method to design fuzzy controller using the experience of the operating expert and experimental numeric data for the robust control about the noise and disturbance instead of the traditional PID controller for the main steam temperature control of the thermal power plant. The temperature of main steam temperature process has to be controlled uniformly for the stable electric power output. The process has the problem of the hunting for the cases of various disturbances. In that case, the manual action of the operator happened to be introduced in some cases. We adopted the TSK (Takagi-Sugeno-Kang) model as the fuzzy controller and designed the fuzzy rules using the informations extracted directly from the real plant and various operating condition to solve the above problems and to apply practically. We implemented the real fuzzy controller as the Function Block module in the DCS(Distributed Control System) and evaluated the feasibility through the experimental results of the simulation.

화력발전설비 감시점검용 필드 로봇 시스템 개발 (Development of Patrol Robot System for Thermal Power Plant Facilities)

  • 박준영;이재경;조병학
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.849-857
    • /
    • 2009
  • To guarantee the safety and reliability of obsolete thermal power plants, on site routine patrol in their facilities has been done by human workers. Due to their poor working environments, however, a patrol robot system has been gradually required instead of the human workers from the viewpoint of the workers' safety and work efficiency. For this purpose, this paper presents a patrol robot, controllers, and its control scheme. Especially, this robot system uses a line tracing algorithm, which uses a vision camera instead of IR sensors, and an RFID system for its patrol operation. We confirmed its effectiveness through experiments.