• Title/Summary/Keyword: Thermal Phenomena

Search Result 727, Processing Time 0.035 seconds

Numerical Study on Skin Burn Injury due to Flash Flame Exposure (돌발화염으로 인한 화상예측에 관한 수치해석적 연구)

  • Lee, Jun-Kyoung;Bang, Chang-Hoon
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.13-20
    • /
    • 2012
  • Many fire-fighters suffer from the burn injuries, and the severe burns are the most catastrophic injury a person can survive, resulting in pain, emotional stress, and tremendous economic costs. It is important to understand the physiology of burns for prevention from skin burns and a successful treatment of a burn patient. But a few researches have been presented because the complex physical phenomena of our inside body like non-linearity characteristics of human skin make them difficult. Thus in this study, thermal analyses of biological tissues exposed to a flash fire causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. The several previous models for skin thermo-physical properties were summarized, and the calculated values with those models of tissue injury were compared with the results obtained by the previous experiment for low heat flux conditions. The skin models with good agreement could be found. Also, the skin burn injury prediction results with the best model for high heat flux conditions by flash flame were suggested.

Numerical Study on the Effect of Damper Position on Characteristics of Thermal Flow at the Vestibules and Fire Door (댐퍼의 위치가 부속실 및 방화문에서의 열 유동 특성에 미치는 영향에 관한 수치해석 연구)

  • Moon, Hyo-Jun;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The pressurized smoke control system is important for fire safety in building because it is directly concerned with egress time of people. Even though the damper plays an essential role in the pressurized smoke control system, the phenomena of backflow smoke occurs for a certain the damper position. The research for a position of damper effects on distribution of air flow at the fire door is not performed. In this study, numerical simulation using FDS 5.5 was carried out to analyze the effect of the position of damper on flow distribution at the fire door. To simulate real situation, effects of opening and closing of fire door was considered. As a result, when HRR was between 200 kW and 400 kW, in the case which the damper was on the opposite wall of the fire door, the back flow to the vestibules was large compared to the two other cases of damper position. But when HRR was above 400 kW, Effect on damper position was not occurred.

FIV Characteristics of U-Tubes Due to Relocation of the Tube Supprot Plates (튜브 지지판 재배치에 따른 유체유발진동 특성 해석)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.312-317
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the PIAT (Program for Integrity Assessment of Steam Generator Tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-vibration bars such as vertical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.

  • PDF

A Suggestion of the Hydrogen Flame Speed Correlation under Severe Accidents (중대사고시 수소연소에 의한 화염속도 상관식 제시)

  • Kang, Chang-Woo;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • The flame speed correlation considering thermal-hydraulic phenomena under severe accidents is proposed and correction coefficients are defined. This correlation modifies the pressure dependency in Iijima-Takeno correlation and adds the steam suppression effects to it in the anticipated hydrogen and steam concentration ranges under severe accidents. The existing models of flame speed due to hydrogen combustion under severe accidents are based on the experiments which were performed merely at room temperature and atmospheric pressure. They have difficulty in predicting a accurate flame speed in a case of high temperature and pressure during severe accidents. Thus the flame structure is assumed as a prerequisite to the reliable determination of flame speed and theoretical model is developed. To examine the validity, flame speeds in various conditions calculated by this model are compared with those obtained by the calculation of the existing correlations of the codes such as improved HECTR and MAAP. Also the steam suppression ratio is quantified and the steam suppression coefficient is defined as a composition of mixture. Initial temperature and pressure dependencies are investigated and correction coefficents are determined. More experimental studies can be recommended to improve this correlation to its further works.

  • PDF

Properties of $CaO-P_2O_5-SiO_2$ Glasses ($CaO-P_2O_5-SiO_2$계 유리의 물성)

  • 조정식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.289-298
    • /
    • 1993
  • Properties in terms of the variation of the glass compositions, which were density (p), molar volume(Vm), atom/ion packing density (Dp), refractive index (nD), transformation temperature (Tg), dilatometric softening point (Td), thermal expansion coefficient (α), Young's modulus (E), and knoop hardness (KHN) were investigated in CaO-SiO2 glasses and CaO-P2O5-SiO2 glasses containing less than 10mole% of P2O5. Those properties were measured by density measurement kit, Abbe refractometer, dilatometer, ultrasonic pulse echo equipment, and micro hardness tester. When CaO content was increased in CaO-SiO2 glasses, p, Dp, nD, Tg, Td, α, E and KHN were increased, while Vm was decreased. When P2O5 was added to the CaO-SiO2 glasses with constant CaO/SiO2 ratio as 1.07, p, Dp, nD, Tg, Td, α, E and KHN were decreased, while Vm was increased. When the amount of P2O5 in glasses was kept constant, the changes of the properties with variation of CaO content in the CaO-P2O5-SiO2 glasses were very similar to those of CaO-SiO2 glasses. These phenomena could be explained by the structural role of P2O5 in the CaO-P2O5-SiO2 glasses, which was polymerization of siicate structures and resulted in [PO4] monomer structure in glasses. Due to this structural characteristics, the bond strength and packing density were changed with compositions. Proportional relationships between 1) np and Dp, 2) Tg, Td, α and CaO content, 3) E and Vm-1, and 4) KHN and P2O5 content were evaluated in this investigation.

  • PDF

Investigation of Reinforced Distribution in Fabrication Process of Metal Matrix Composites by Combined Stirring Process (복합교반법에 의한 금속복합재료의 제조공정에 따른 강화재의 분산성 검토)

  • 이동건;강충길
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.1-11
    • /
    • 2001
  • The particulates reinforced metal matrix composites(PMMC) have a number of interesting mechanical properties. including high strength and good resistance to wear at high temperature and low thermal expansion. The equipment structure to obtain the homogeneous distribution in composites are proposed for the continuous pouring of reinforcement at the desired temperature. The particulates reinforced metal matrix composites(A357/SiCp) were fabricated by the process of the combined stirring method with the various fabrication process. The combined stirring method to niform distribution of particle is consisted of two stirring force both electro-magnetic stirring generated from induction heating and mechanical stirring with graphite stirrer. PMMC billets were fabricated with the volume fractions ranged from 0% to 20% and particle sizes ranged from 14${\mu}{\textrm}{m}$ to 25${\mu}{\textrm}{m}$. It is important to cont the size of primary $\alpha$-Al solid particles because it could become the cause of the particle pushing or capture phenomena from the fact that secondary dendrite arm spacing size depends on the cooling rate during the solidification in hypoeutectic Al-Si alloy. Therefore, the effect of primary $\alpha$-Al on the reinforcement distribution in matrix alloys has been investigated. The microstructure of PMMC fabracated with various volume fractions(0%, 10%, and 20%) and particle size were observed.

  • PDF

Numerical Analysis of Thermal and Flow affected by the variation of rib interval and Pressure drop Characteristics (리브 간격 변화에 따른 열.유동 수치해석 및 압력 저하 특성)

  • Chung, Han-Shik;Lee, Gyeong-Wan;Shin, Yong-Han;Choi, Soon-Ho;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.616-624
    • /
    • 2011
  • The flow characteristics and heat transfer augment on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow has been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio were 0.07 and rib height to channel height ratio was set as e/H=0.117 for various PR(rib pitch-to-rib height rate) between 8~14, respectively. The SST k-${\omega}$ turbulence model and v2-f turbulence model were used to find out the heat transfer and the flow characteristics of near the wall which are suited to obtain realistic phenomena. The numerical analysis results show turbulent flow characteristics, heat transfer enhancement and friction factor as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow. and v2-f turbulence model simulation results have a good agreement with experimental values.

Prediction of Critical Heat Flux for Saturated Flow Boiling Water in Vertical Narrow Rectangular Channels (얇은 수직 사각유로에서의 포화비등조건 임계열유속 예측)

  • Choi, Gil Sik;Chang, Soon Heung;Jeong, Yong Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.953-963
    • /
    • 2015
  • There is an increasing need to understand the thermal-hydraulic phenomena, including the critical heat flux (CHF), in narrow rectangular channels and consider these in system design. The CHF mechanism under a saturated flow boiling condition involves the depletion of the liquid film of an annular flow. To predict this type of CHF, the previous representative liquid film dryout models (LFD models) were studied, and their shortcomings were reviewed, including the assumption that void fraction or quality is constant at the boundary condition for the onset of annular flow (OAF). A new LFD model was proposed based on the recent constitutive correlations for the droplet deposition rate and entrainment rate. In addition, this LFD model was applied to predict the CHF in vertical narrow rectangular channels that were uniformly heated. The predicted CHF showed good agreement with 284 pieces of experimental data, with a mean absolute error of 18. 1 % and root mean square error of 22.9 %.

Surface Segregation of Hydroniums and Chlorides in a Thick Ice Film at Higher Temperatures

  • Lee, Du Hyeong;Bang, Jaehyeock;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.263-263
    • /
    • 2013
  • This work examines the dynamic properties of ice surfaces in vacuum for the temperature range of 140~180 K, which extends over the onset temperatures for ice sublimation and the phase transition from amorphous to crystallization ice. In particular, the study focuses on the transport processes of excess protons and chloride ions in ice and their segregative behavior to the ice surface. These phenomena were studied by conducting experiments with a relatively thick (~100 BL) ice film constructed with a bottom $H_2O$ layer and an upper $D_2O$ layer, with excess hydronium and chloride ions trapped at the $H_2O$/$D_2O$ interface as they were generated by the ionization of hydrogen chloride. The migration of protons, chloride ions, and water molecules to the ice film surface and their H/D exchange reactions were measured as a function of temperature using the methods of low energy sputtering (LES) and Cs+ reactive ion scattering (RIS). Temperature programmed desorption (TPD) experiments monitored the desorption of water and hydrogen chloride from the surface. Our observations indicated that both hydronium and chloride ions migrated from the interfacial layer to segregate to the surface at high temperature. Hydrogen chloride gas desorbs via recombination reaction of hydronium and chloride ions floating on the surface. Surface segregation of these species is driven by thermodynamic potential gradient present near the ice surface, whereas in the bulk, their transport is facilitated by thermal diffusion process. The finding suggests that chlorine activation reactions of hydrogen chloride for polar stratospheric ice particles occur at the surface of ice within a depth of at most a few molecular layers, rather than in the bulk phase.

  • PDF

Modeling, Simulation, and Control of a Polyaniline/Carbon-Nanotube Polymer Actuator (폴리아닐린/탄소나노튜브 폴리머 액츄에이터의 모델링, 시뮬레이션 및 제어)

  • Sohn, Ki-Won;Yi, Byung-Ju;Kim, Sean-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.348-354
    • /
    • 2007
  • Polymer actuators, which are also called as smart materials, change their shapes when electrical, chemical, thermal, or magnetic energy is applied to them and are useful in wide variety of applications such as microelectromechanical systems (MEMS), machine components, and artificial muscles. For this study, Polyaniline/carbon-nanotube polymer actuator that is one of electroactive polymer actuators was prepared. Since the nonlinear phenomena of hysteresis and a step response are essential considerations for practical use of polymer actuators, we have investigated the movement of the Polyaniline/carbon-nanotube polymer actuator and have developed an integrated model that can be used for simulating and predicting the hysteresis and a step response during actuation. The Preisach hysteresis model, one of the most popular phenomenological models of hysteresis, were used for describing the hysteretic behavior of Polyaniline/carbon-nanotube polymer actuator while the ARX method, one of system identification techniques, were used for modeling a step response. In this paper, we first expain details in preparation of the Polyaniline/carbon-nanotube polymer then present the mathematical description of our model, the extraction of the parameters, simulation results from the model, and finally a comparison with measured data.