• Title/Summary/Keyword: Thermal Model Correlation

Search Result 160, Processing Time 0.023 seconds

The Correlation of Satellite Thermal Mathematical Model using Results of Thermal Vacuum Test on Structure-Thermal Model (저궤도 인공위성 열-구조 모델 열진공시험 결과를 활용한 열모델 보정)

  • Lee, Jang-Joon;Kim, Hui-Kyung;Hyun, Bum-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.916-922
    • /
    • 2009
  • Because thermal design of satellite carrying out mission in space is performed by thermal analysis result using thermal mathematical model, accuracy of thermal mathematical model is important and it can be improved by model correlation. Correlation steps of satellite thermal math model are composed of modeling of satellite configuration placed in thermal vacuum chamber, verification of correspondence between thermal math model and real satellite configuration, and adjustment of modeling parameters from major part to minor part etc. In this study, correlation success criteria was established and correlation for satellite thermal math model was performed using result of thermal vacuum test of satellite structure-thermal model to meet the success criteria. The overall results satisfied the criteria and this correlated thermal model was applied for detailed thermal design of satellite.

The Correlation of Thermal Analysis Model using Results of LEO Satellite Optical Payload's Thermal Vacuum Test (저궤도위성 광학탑재체의 열진공시험 결과를 이용한 열해석 모델 보정)

  • Kim, Min-Jae;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.620-621
    • /
    • 2010
  • Thermal models are made to verify the process that operate in space orbit. In this study, thermal analysis model correlation was performed to satisfy the criteria of correlation. Ground thermal vacuum test results are used for the correlation thermal model in the process of thermal model verification.

  • PDF

THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE (정지궤도 위성의 열해석 모델 보정)

  • Jun, H.Y.;Kim, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.230-235
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very law temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual unit were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

  • PDF

THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE (지구 정지궤도 위성의 열해석 모델 보정)

  • Jun, H.Y.;Kim, J.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.59-65
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very low temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual units were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

Optimal Variable Selection in a Thermal Error Model for Real Time Error Compensation (실시간 오차 보정을 위한 열변형 오차 모델의 최적 변수 선택)

  • Hwang, Seok-Hyun;Lee, Jin-Hyeon;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.215-221
    • /
    • 1999
  • The object of the thermal error compensation system in machine tools is improving the accuracy of a machine tool through real time error compensation. The accuracy of the machine tool totally depends on the accuracy of thermal error model. A thermal error model can be obtained by appropriate combination of temperature variables. The proposed method for optimal variable selection in the thermal error model is based on correlation grouping and successive regression analysis. Collinearity matter is improved with the correlation grouping and the judgment function which minimizes residual mean square is used. The linear model is more robust against measurement noises than an engineering judgement model that includes the higher order terms of variables. The proposed method is more effective for the applications in real time error compensation because of the reduction in computational time, sufficient model accuracy, and the robustness.

  • PDF

Thermal Model Correlation and Heater Design Verification for LEO Satellite Optical Payload's Thermal Analysis Model Verification (저궤도 위성 광학탑재체의 열해석 모델 검증을 위한 열모델 보정 및 히터 설계)

  • Kim, Min-Jae;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1069-1076
    • /
    • 2011
  • All of the satellite components must be operated within the permissible temperature range during the mission in orbit. Therefore, thermal design is performed to develop verified thermal model and to secure thermal stability on the ground. In this study, thermal model correlation was performed to satisfy the criteria of correlation using ground thermal vacuum/thermal balance test results of LEO satellite optical payload. We also secured verified thermal model by controlling operating cycle of flight heaters. In addition, it was confirmed that all components are within the permissible temperature range through conducting orbit environment thermal analysis. We also secured thermal stability of the satellite.

Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools (공작기계 열오차 모델의 최적 센서위치 선정)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

A STUDY ON THERMAL MODEL REDUCTION ALGORITHM FOR SATELLITE PANEL (인공위성 패널 열해석모델 간소화 알고리즘 연구)

  • Kim, Jung-Hoon;Jun, Hyoung Yoll;Kim, Seung Jo
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • Thermal model reduction algorithms and techniques are introduced to condense a huge satellite panel thermal model into the simplified model on the purpose of calculating the thermal responses of a satellite on orbit. Guyan condensation algorithm with the substitution matrix manipulation is developed and the mathematical procedure is depicted step by step. A block-form LU decomposition method is also invited to compare the developed algorithm. The constructed reduced thermal model induced from the detailed model based on a real satellite panel is satisfying the correlation criterion of ${\pm}2^{\circ}C$ for the validity accuracy. Guyan condensation algorithm is superior to the block-form LU decomposition method on computation time.

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.