• Title/Summary/Keyword: Thermal Mass Flow Meter

Search Result 16, Processing Time 0.02 seconds

A Study on Formation of Slurry Ice by using the Reversing Flow in a Bundle of Tube (역전 유동층을 이용한 관군 내에서의 슬러리아이스 생성에 관한 연구)

  • Oh, Cheol;Choi, Young-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.35 no.5
    • /
    • pp.365-370
    • /
    • 2011
  • The ice-thermal energy storage cooling system has been applied to relief a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type system is one kind of ice-thermal storage cooling system utilizing cheaper off-peak electricity. This study is experimented to observe an influence of experimental conditions on production characteristics of slurry ice by using reversing flow, which is putting reversing material into test section to disturb ice adhesion. At this experiment, poly propylene ball of dimeter 10 mm was used as reversing material, and ethylene glycol-water solution of 20wt% concentration was used as flow material. The experimental apparatus was constructed of the slurry ice making and storage tank(test section), the brine tank, pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter, data logger for fluid temperature measuring. The experiments were carried out under various conditions, with volumetric flow rate, ball filling rate and air filling rate.

EFFECT OF INTAKE PORT GEOMETRY ON THE IN-CYLINDER FLOW CHARACTERISTICS IN A HIGH SPEED D.I. DIESEL ENGINE

  • LEE K. H.;RYU I. D.;LEE C. S.;REITZ R. D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, the HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a HSDI diesel engine with a 4-valve type cylinder head. The four kinds of cylinder head were manufactured to elucidate the effect of intake port geometry on the in-cylinder flow characteristics. The steady flow characteristics such as coefficient of flow rate $(C_{f})$, swirl ratio (Rs), and mass flow rate (m,) were measured by the steady flow test rig and the unsteady flow velocity within a cylinder was measured by PIV. In addition, the in-cylinder flow patterns were visualized by the visualization experiment and these results were compared with simulation results calculated by the commercial CFD code. The steady flow test results indicated that the mass flow rate of the cylinder head with a short distance between the two intake ports is $13\%$ more than that of the other head. However, the non-dimensional swirl ratio is decreased by approximately $15\%$. As a result of in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the position of swirl center was changed with crank angle. As the piston moves to near the TDC, the swirl center corresponded to the cylinder center and the velocity distribution became uniform. In addition, the results of the calculation are in good agreement with the experimental results.

A Study on the Flame Behavior of Whirl Eire and Pool Fire (Whirl Fire와 Pool fire의 화염 거동에 관한 연구)

  • Oh Kyu-Hyung;Kang Youn-Ok;Lee Sung-Eun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.45-50
    • /
    • 2004
  • 4-panel of 1m height and 45cm width were fixed on the $40cm{\times}40cm$ bottom plate and the opening of the panel comer was 5cm. Diameter of stainless vessel is loom and its height is 2cm and it located at the center of the bottom plate. 78mL liquid fuel was filled in the vessel and its depth was 1cm. Flame temperature was measured with K type thermocouple, and radiation heat of flame was measured with heat flux meter. Flame height and its behavior was visualized with video camera. and mass burning rate was measured by fuel combustion time. According to the development of fire, flame swirling was begin. From the experiment the mass burning rate was larger and the height of flame was higher than the usual pool fire flame. Flame temperature and heat flux also increased far more than the pool fire. Consequently the swirling air flow through the openings between the panel and thermal buoyance contribute to increase of heat release rate, flame length and mass burning rate.

Preparation of water-swollen-hydrogel membrane for gas separation. I. (기체 분리용 수팽윤성 분리막 제조. I.)

  • 박유인;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.43-44
    • /
    • 1996
  • Water-swollen-hydrogel membranes for gas separation were prepared by dipcoating and thermal crosslinking of poly(vinylalcohol) (PVA) - poly(acrylacid) (PAA) blends on asymmetric porous polyetherimide(PEI) supporters. The polyetherimide supporters, prepared by phase inversion of polyetherimide solutions in N-methylpyrrolidone(NMP) (composition of PEI/NMP=25/75), had good heat and chemical resistane. The coating materials with different blending ratios of PVA/PAA(=90/10, 80/20, 70/30) were characterized with differential scanning calorimetry (DSC), infrared spectroscopy(IR) and the water swelling ratios. The permeabilities and the separation factors of carbon dioxide through these membranes were measured by a mass flow meter and gas chromatograph at different temperatures, respectively, under a vacuum mode of downstream.

  • PDF

A Study on the Performance of Flat-plate Solar Air Collector and its Application to Grain Drying (평면식 태양열집열기를 이용한 곡물 건조개선에 관한 연구)

  • 민영봉;최규홍
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.114-125
    • /
    • 1978
  • The use of petroleum fuels in grain drying causes problems of high cost and management. To solve these problems, it is required to study on soLar energy as an alternative to petroleum fuels for grain drying. The purposes of this study were to find out the optimum received area and air flow rate of a flat-plate solar air collector for grain drying and to assess its effects on grain drying with a small grain bin. The results of this study are summarized as follows ; 1. The calculated optimum tilt angles of the collector in the summer and autumn drying seasons were 20 and 50 degress, respectively, in suwon area. 2. The outlet temperature of the collector was $36^\circ C$ on the daily average with the maximum of $36^\circ C$ at 12:00 o clock. Solar radiation on the collector surface was 1.04 ly( 1 langley = 1 cal/$cm^2$) per minute on the daily average and 1.30 ly per minute on the maximum at 11:00am. The thermal efficiency of the collector was 62.4 percent on the daily average, and the air flow-rate per unit receiving are was 1.03 $m^3$/min/$m^2$.4. The calculated optimum receiving area and the air flow-rate per unit cubic volume for paddy in autumn drying season was 2 $m^2$ and 2$m^3$/min , respectively. 5. not significantly difference in the collector efficiency was appeared between the rotating and fixed type of solar collector. 6. For drying of wheat with 0.6 meter of the depth in the bin, approximately 9 hours were required to reduce the moisture content from 21.6% to 13% with air follow rate of 5 $m^3$/min an initial moisture per cubic meter of wheat and with air temperature of $52^\circ C$. 7. In the drying test of rough rice with a turning operation in a grain bin approximately 21 hours were required to reduced the moisture from 21% to 14.5% with airflow rate of 2 $m^3$/min per cubic meter of rice and the air temperature of $43.5^\circ C$. 8. Over-drying at the bottom and less -drying at the top of the grain mass was resulted from the high -temperature of drying air which was obtained from the flat-plate solar collector in this test. An appropriate operation should be prepared for the uniform moisture of the grain in the bin.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.