• 제목/요약/키워드: Thermal Loadings

검색결과 109건 처리시간 0.023초

전압 변조 방법에 따른 단상 5-레벨 NPC 태양광 인버터의 전력 손실 및 열 부하 분석 (Effect of Pulse Width Modulation Methods on Power Losses and Thermal Loadings of Single-Phase 5-Level NPC Inverters for PV Systems)

  • 류태림;최의민
    • 전력전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.56-62
    • /
    • 2022
  • In this paper, the effect of pulse width modulation methods on thermal loadings and power losses of single-phase five-level NPC inverters for photovoltaic systems are analyzed. The pulse width modulation methods affect the power losses of the NPC inverters and thus lead to different thermal loadings of NPC inverters. To identify the reliability-critical power device with respect to thermal stress, the thermal loadings of I- and T-type NPC inverters are analyzed by applying the unipolar pulse modulation method. Then, the effect of the discontinuous pulse width modulation method on power losses and thermal loadings of power devices of I- and T-type NPC inverters are analyzed. Finally, the operation of NPC inverters applying the discontinuous pulse modulation method is confirmed by experiments. The results show that the discontinuous pulse modulation method is able to improve the reliability of NPC inverters by reducing thermal loadings of reliability-critical power devices and it is more effective for T-type NPC inverters than I-type NPC inverters.

엔진 배기매니폴드의 열피로 수명 예측 (Thermal Fatigue Life Prediction of Engine Exhaust Manifold)

  • 최복록
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.139-145
    • /
    • 2007
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermomechanical cyclic loadings. The analysis includes the FE model of the exhaust system, temperature dependent material properties, and thermal loadings. The result shows that at an elevated temperature, large compressive plastic deformations are generated, and at a cold condition, tensile stresses are remained in several critical zones of the exhaust manifold. From the repetitions of thermal shock cycles, plastic strain ranges could be estimated by the stabilized stress-strain hysteresis loops. The method was applied to assess the low cycle thermal fatigue for the engine exhaust manifold. It shows a good agreement between numerical and experimental results.

Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.121-133
    • /
    • 2017
  • This paper proposes an analytical solution method for free vibration of curved functionally graded (FG) nonlocal beam supposed to different thermal loadings, by considering porosity distribution via nonlocal elasticity theory for the first time. Material properties of curved FG beam are assumed to be temperature-dependent. Thermo-mechanical properties of porous FG curved beam are supposed to vary through the thickness direction of beam and are assumed to be temperature-dependent. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG structures. The rule of power-law is modified to consider influence of porosity according to even distribution. The governing equations of curved FG porous nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is used to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loadings with simply supported boundary condition. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality, porosity volume fractions, type of temperature rising, gradient index, opening angle and aspect ratio of curved FG porous nanobeam on the natural frequency are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Bending analysis of power-law sandwich FGM beams under thermal conditions

  • Garg, Aman;Belarbi, Mohamed-Ouejdi;Li, Li;Tounsi, Abdelouahed
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.243-261
    • /
    • 2022
  • Broad writing on the examination of sandwich structures mirrors the significance of incorporating thermal loadings during their investigation stage. In the current work, an endeavor has been made to concentrate on sandwich FGM beams' bending behaving under thermal loadings utilizing shear deformation theory. Temperature-dependent material properties are used during the analysis. The formulation includes the transverse displacement field, which helps better predict the behavior of thick FGM beams. Three-different thermal profiles across the thickness of the beam are assumed during the analysis. The study has been carried out on both symmetric and unsymmetric sandwich FGM beams. It has been observed that the bending behavior of sandwich FGM beams is impacted by the temperature profile to which it is subjected. Power-law exponent and thickness of core also affect the behavior of the beam.

복합재료의 내부손상 평가 (Evaluation of Composite Material Damage)

  • 이재준;김태우;김찬묵
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.689-692
    • /
    • 2002
  • Composite materials, when damaged under thermal or mechanical loadings, show property changes. Among many mechanical properties of composite materials. the stiffness tend to be reduced due to micro-cracking, debonding, or delamination caused by external loadings. This research presents results regarding the detecting technique of internal damages within composite that experienced low-velocity impacts. Post-damage evaluations were made experimentally using flexural and compression loadings. Preliminary finite element analysis was made and compared with analytical solutions. The experimental results to determine the degree of damage will be compared with finite element results.

  • PDF

Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading

  • Murugesan, Nagaraj;Rajamohan, Vasudevan
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.583-601
    • /
    • 2015
  • In the present study, the combined effects of thermal and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated beams are numerically analyzed. The finite element modelling of laminated composite beams and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the finite element analysis (FEA) is demonstrated by comparing the experimental test results obtained due to mechanical loadings under the influence of thermal environment with those derived using the present FEA. Various parametric studies are also performed to investigate the effect of thermal loading on interlaminar stresses generated in symmetric, anti-symmetric, asymmetric, unidirectional, cross-ply, and balanced composite laminated beams of different stacking sequences with identical mechanical loadings and various boundary conditions. It is shown that the elevated thermal environment lead to higher interlaminar shear stresses varying with the stacking sequence, length to thickness ratio, ply orientations under identical mechanical loading and boundary conditions of the composite laminated beams. It is realized that the magnitude of the interlaminar stresses along xz plane is always much higher than those of along yz plane irrespective of the ply-orientation, length to thickness ratios and boundary conditions of the composite laminated beams. It is also observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber reinforced composite laminated beams are increasing in the order of symmetric cross-ply laminate, unidirectional laminate, asymmetric cross-ply laminate and anti-symmetric laminate. The interlaminar shear stresses are higher in thinner composite laminated beams compared to that in thicker composite laminated beams under all environmental temperatures irrespective of the laminate stacking sequence, ply-orientation and boundary conditions.

Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Selvamani, Rajendran
    • Advances in nano research
    • /
    • 제8권3호
    • /
    • pp.203-214
    • /
    • 2020
  • This paper investigated bending of magneto-electro-elastic (MEE) nanobeams under hygro-thermal loading embedded in Winkler-Pasternak foundation based on nonlocal elasticity theory. The governing equations of nonlocal nanobeams in the framework parabolic third order beam theory are obtained using Hamilton's principle and solved implementing an analytical solution. A parametric study is presented to examine the effect of the nonlocal parameter, hygro-thermal-loadings, magneto-electro-mechanical loadings and aspect ratio on the deflection characteristics of nanobeams. It is found that boundary conditions, nonlocal parameter and beam geometrical parameters have significant effects on dimensionless deflection of nanoscale beams.

온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석 (Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress)

  • 문형일;김헌영;최철우;정갑식
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.496-500
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behavior of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석 (Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress)

  • 문형일;김헌영;최철우;정갑식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.288-292
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behaviour of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

체적비구배를 이용한 섬유강화 적층 복합재의 열하중에 의한 층건력 감소에 대한 연구 (A Study on Reduction of Thermal Interlaminar Forces of Fiber-Reinforced Laminate Composites Using Volume Fraction Gradient)

  • 최덕기;신종한
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1115-1122
    • /
    • 2000
  • This paper addresses an application of a fiber volume fraction gradients to reduce the interlaminar forces of fiber reinforced composites subjected to thermal loadings. The degree of the reduction in the interlaminar forces may be expressed by introducing a new parameter, so called, the interlaminar force parameter. Several cases of stacking sequences and models for fiber volume fraction gradients prove the availability of the new parameter which is defined in this study.