• Title/Summary/Keyword: Thermal Instability

Search Result 281, Processing Time 0.025 seconds

Thermal Stress Analysis on the Solid Oxide Fuel Cell according to Operating Temperature

  • Kwon, Oh-Heon;Kang, Ji-Woong;Jo, Se-Jin
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • The fuel cell is one of the green energy receiving a lot of attention. Among the fuel cells, it is generally referred to SOFC(solid oxide fuel cell) which is made up composites of a solid. SOFC has excellent merits in the side of environment and energy. However because of the high operating temperature, it has economic loss by the using of expensive materials and problems of structural instability by thermal stresses. Therefore, this study aims to the effect of analysis by the FEMLAB. The results have deformations and the maximum stresses from the variation of the thickness of vulnerability spots. The deformation shows expansion as 0.82% and the stress ${\sigma}_{xx}$ is 392MPa in electrolyte and -56.31MPa in anode. When increasing or decreasing the thickness to 50% of the reference thickness about the electrolyte which is vulnerable spots.

  • PDF

Experimental Study on the Flame Behavior and the NOx Emission Characteristics of Low Calorific Value Gas Fuel (저 발열량 가스 연료의 화염거동 및 NOx 발생 특성에 관한 실험적 연구)

  • Kim, Yong-Chul;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.89-93
    • /
    • 1999
  • Experimental studies are conducted to investigate the flame stability and the thermal/fuel NOx formation characteristics of the low calorific value(LCV) gas fuel. Synthetic LCV fuel gas is produced through mixing carbon monoxide, hydrogen, nitrogen and ammonia on the basis that the thermal input of the syngas fuel into a burner is identical to that of natural gas, and then the syngas mixture is fed to and burnt with air on flat flame burner. Flame behaviors are observed to identify flame instability due to blow-off or flash-back when burning the LCV fuel gas at various equivalence ratio conditions. Measurements of NOx in combustion gas are made for comparing thermal and fuel NOx emissions from the LCV syngas combustion with those of the natural gas one, and for analyzing ammonia to NOx conversion mechanism. In addition, the nitrogen dilution of the LCV syngas is preliminarily attempted as a NOx reduction technique.

  • PDF

Numerical assessment of nonlocal dynamic stability of graded porous beams in thermal environment rested on elastic foundation

  • Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.455-461
    • /
    • 2022
  • Numerical assessment of the dynamic stability behavior of nonlocal beams rested on elastic foundation has been provided in the present research. The beam is made of fucntional graded (FG) porous material and is exposed to thermal and humid environments. It is also consiered that the beam is subjected to axial periodic mechanical load which especific exitation frequency leading to its instability behavior. Beam modeling has been performed via a two-variable theory developed for thick beams. Then, nonlocal elasticity has been used to establish the governing equation which are solved via Chebyshev-Ritz-Bolotin method. Temperature and moisture variation showed notable effects on stability boundaries of the beam. Also, the stability boundaries are affected by the amount of porosities inside the material.

Numerical Simulations on Nonlinear Behaviors of Diffusional-Thermal Instabilities in Counterflow Diffusion Flames (대향류 확산화염에서 확산-전도 불안정의 비선형 거동에 대한 수치해석)

  • Lee, Su-Ryong;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.695-702
    • /
    • 2002
  • Nonlinear dynamics of striped diffusion flames, by the diffusional-thermal instability with Lewis numbers sufficiently less than unity, is numerically investigated by examining various two-dimensional flame-structure solutions. The Lewis numbers for fuel and oxidizer are assumed to be identical and an overall single-step Arrhenius-type chemical reaction rate is employed in the model. Particular attention is focused on identifying the flame-stripe solution branches corresponding to each distinct stripe pattern and hysteresis encountered during the transition. At a Damkohler number slightly greater than the extinction Damkohler number, eight-stripe solution first emerges from one dimensional solution. The eight-stripe solution survives Damkohler numbers much smaller than the extinction Damkohler number until the transition to four-stripe solution occurs at the first forward transition Damkohler number. At the second forward transition Damkohler number, somewhat smaller than the first transition Damkohler number, the transition to two-stripe solution occurs. However, anu further transition from two-stripe solution to one-stripe solution is not always possible even if one-stripe solution can be independently accessed for particular initial conditions. The Damkohler number ranges for two-stripe and one-stripe solutions are found to be virtually identical because each stripe is an independent structure if distance between stripes is sufficiently large. By increasing the Damkohler number, the backward transition can be observed. In comparison with the forward transition Damkohler numbers, the corresponding backward transition Damkohler numbers are always much greater, thereby indicating significant hysteresis between the stripe patterns of strained diffusion flames.

Acceleration in Diffusive-thermal Instability by Heat Losses (열손실에 의한 확산-열 불안정성의 가속화)

  • Park, June-Sung;Park, Jeong;Lee, Kee-Man;Kim, Jeong-Soo;Kim, Sung-Cho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.145-152
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The dramatic change of burner diameters in which flame length is an indicator of lateral conduction heat loss was applied to examine the onset condition of edge flame oscillation and flame oscillation modes. Especially, extinction behaviors quite different from the previous study were observed.

  • PDF

Characterization of instability in a-Si:H TFT LCD utilizing copper as electrodes

  • Kuan, Yung-Chia;Liang, Shuo-Wei;Chiu, Hsian-Kun;Sun, Kuo-Sheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.747-751
    • /
    • 2006
  • The hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) with copper as source and drain electrode has been fabricated to obtain its transfer characteristics and stressed with positive and negative bias to investigate the instability variation comparing to conventional MoW-Al based TFT device. The results show that there is no copper diffusion into active layer of a-Si:H TFT, even during the thermal process. In addition, a 15-inch XGA a Si:H TFT LCD display utilizing Cu as gate electrodes has been developed.

  • PDF

INSTABILITY OF OBLIQUE SHOCK WAVES WITH HEAT ADDITION (후방 발열이 있는 경사 충격파의 불안정성)

  • Choi, J.Y.;Shin, J.R.;Cho, D.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.232-235
    • /
    • 2007
  • A comprehensive numerical study was carried out to identify the on-set condition of the cell structures of oblique detonation waves (ODWs). Mach 7 incoming flow was considered with all other flow variables were fixed except the flow turning angles varying from 35 to 38. For a given flow conditions theoretical maximum turning angle is $38.2^{\circ}$ where the oblique detonation wave may be stabilized. The effects of grid resolution were tested using grids from $255{\times}100$ to $4,005{\times}1,600$. The numerical smoked foil records exhibits the detonation cell structures with dual triple points running opposite directions for the 36 to 38 turning angles. As the turning angle get closer to the maximum angle the cell structures gets finer and the oscillatory behavior of the primary triple point was observed. The thermal occlusion behind the oblique detonation wave was observed for the $38^{\circ}$ turning angle.

  • PDF

Instability of Nanoscale Thin Film;a Molecular Dynamics Study (분자동역학 전산모사를 이용한 박막의 불안정성 및 나노 구조물 형성에 관한 연구)

  • Han, Min-Sub;Lee, Joon-Sik;Park, Seung-Ho;Choi, Young-Ki
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.228-232
    • /
    • 2003
  • It has recently been shown that the instability of thin film of a nanoscale can be used in the processes of building nano-size structures, which have potential practical importance in nanotechnology. Molecular dynamics simulation is conducted to probe the thin fluid film of a nano-size and its dynamic behavior during destabilization and structure formation. Non-continuum characteristics are shown in the properties like pressure tensor, viscosity, and thermal conductivity. The thermocapillary force induces a slow growth of long waves in the scale considered. A long-range interaction with the solid wall induces vertical structures, whose formation time and space between neighbors are proportional to the strength of the interaction.

  • PDF

Comparison of Dynamic Pressure Data in Hot-firing Tests of Liquid Rocket Engine Gas Generators (액체로켓엔진 가스발생기 연소시험에서 동압 데이터 비교)

  • Joo, Seongmin;Kim, Hyeonjun;Lim, Byoungjik;Kim, Jonggyu;Choi, Hwanseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1088-1092
    • /
    • 2017
  • In this study, a comparison of dynamic pressure data measured in hot-firing tests of liquid rocket engine gas generators with different types of dynamic pressure sensors is presented. The dynamic pressure sensors of different types and manufacturers have exhibited different dynamic pressure due to the influence of thermal shock. However, for the characteristic frequencies and RMS(root mean square) values which are important factors for the analysis of combustion instability, the differences between sensors have been found to be negligible.

  • PDF

Numerical investigation of steady state characteristics and stability of supercritical water natural circulation loop of a heater and cooler arrangements

  • Rai, Santosh Kumar;Kumar, Pardeep;Panwar, Vinay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3597-3611
    • /
    • 2021
  • The present paper studies the thermal-hydraulic behaviour of the rectangular supercritical natural circulation loop (SCNCL) using numerical model of one dimensional. Then the results of this model is confirmed with experimental and benchmark results. Variations with several geometric parameters like loop diameter, riser length, and heater length and operating conditions like heater inlet enthalpy, pressure, friction factor, and inlet and exit loss coefficient on steady-state performance are investigated for various orientations like HHHC, HHVC, VHVC and VHHC of the heater and cooler. The chances of existing static instability (Ledinegg excursion) has been investigated, which reveals that it can arise only in a low inlet enthalpy condition, far from the suggested various orientations of heater and cooler.