• Title/Summary/Keyword: Thermal Image processing

Search Result 138, Processing Time 0.031 seconds

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

Electronic Processor Design for Thermal Imager with Serial/Parallel Scan type (직병렬 주사방식 일정장비의 신호처리기 설계 연구)

  • 송인섭;유위경;윤은석;홍영철;홍석민
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.49-56
    • /
    • 1994
  • This paper describes the design principles and methods of electronic processor for thermal imager with the SPRITE detector, operating in the 8-12 micron band. The thermal imager consists of a optical scanner containing the detector and an electrical signal processor. The optical scanner utilizing rotating polygon and oscillating mirror, is 2-dimensional serial/parallel scan type using 5 elements of the detector. And the electronic processor has pre-processing of 5 chnanel's thermal signal from the detector, and performs digital scan conversion to reform the parallel data stream into serial analog data compatible with conventional RS-170 video. Through the designed electronic processor, we have acquired a satisfactory thermal image. And the MRTD (Minimum Resolvable Temperature Difference) is 0.5$^{\circ}$K at 7.5 cycles/mm.

  • PDF

Thermal Imaging Fire Detection Algorithm with Minimal False Detection

  • Jeong, Soo-Young;Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2156-2170
    • /
    • 2020
  • This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.

Need of Identity Recognition Using Thermal Image (열화상 카메라를 활용한 얼굴 변장 인식의 필요성)

  • Jun, Young-Min;Cheema, Usman;Moon, Seungbin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.878-879
    • /
    • 2018
  • 위 본문은 얼굴 변장인식의 필요성에 대해 언급을 하고 있다. 해당 논문은 얼굴 변장 인식의 기존의 연구 소개와 동시에 열화상 카메라로 촬영한 영상이 얼굴 변장 인식에 더욱 적합한 이유를 설명한다.

DEVELOPMENT OF AN ORTHOGONAL DOUBLE-IMAGE PROCESSING ALGORITHM TO MEASURE BUBBLE VOLUME IN A TWO-PHASE FLOW

  • Kim, Seong-Jin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.313-326
    • /
    • 2007
  • In this paper, an algorithm to reconstruct two orthogonal images into a three-dimensional image is developed in order to measure the bubble size and volume in a two-phase boiling flow. The central-active contour model originally proposed by P. $Szczypi\'{n}ski$ and P. Strumillo is modified to reduce the dependence on the initial reference point and to increase the contour stability. The modified model is then applied to the algorithm to extract the object boundary. This improved central contour model could be applied to obscure objects using a variable threshold value. The extracted boundaries from each image are merged into a three-dimensional image through the developed algorithm. It is shown that the object reconstructed using the developed algorithm is very similar or identical to the real object. Various values such as volume and surface area are calculated for the reconstructed images and the developed algorithm is qualitatively verified using real images from rubber clay experiments and quantitatively verified by simulation using imaginary images. Finally, the developed algorithm is applied to measure the size and volume of vapor bubbles condensing in a subcooled boiling flow.

The Effect of Heat Transfer from the Bubble Growing on the $B\dot{e}nard$ Convection Flow in a Square Cavity ($B\dot{e}nard$ 대류가 형성된 사각공동내의 상단 평판에서 기포의 성장이 열전달에 미치는 영향)

  • Eom, Yong-Kyoon;Kwon, Seung-Hye;Kwon, Gi-Han
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.211-216
    • /
    • 2001
  • Flow motion and variation of thermal field around a bubble which attached at the upper cooled solid wall in a $B\dot{e}nard$ convection flow is studied experimentally using thermo-sensitive liquid-crystal tracers and image processing for flow visualization and analysis. The air is injected gradually by $0.1m\ell$ to make the bubble. As the growing of the bubble in a $B\dot{e}nard$ convection flow, the variation of temperature field and surface tension along the bubble, which in turn cause to change the thermal field patterns and the flow direction and patterns. 6 cells flow pattern is transformed into diverse flow pattern. At the large size of a bubble, it's only conduction mechanism under the region of the bubble because of low Ra number 1137, but the convection flow both sides of the bubble leads to another convection flow in the bubble influence area which has been remained stable stagnation.

  • PDF

Implementation of process and surface inspection system for semiconductor wafer stress measurement (반도체 웨이퍼의 스트레스 측정을 위한 공정 및 표면 검사시스템 구현)

  • Cho, Tae-Ik;Oh, Do-Chang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.11-16
    • /
    • 2008
  • In this paper, firstly we made of the rapid thermal processor equipment with the specifically useful structure to measure wafer stress. Secondly we made of the laser interferometry to inspect the wafer surface curvature based on the large deformation theory. And then the wafer surface fringe image was obtained by experiment, and the full field stress distribution of wafer surface comes into view by signal processing with thining and pitch mapping. After wafer was ground by 1mm and polished from the back side to get easily deformation, and it was heated by three to four times thermal treatments at about 1000 degree temperature. Finally the severe deformation between wafer before and after the heat treatment was shown.

Automatic Registration Method for EO/IR Satellite Image Using Modified SIFT and Block-Processing (Modified SIFT와 블록프로세싱을 이용한 적외선과 광학 위성영상의 자동정합기법)

  • Lee, Kang-Hoon;Choi, Tae-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.3
    • /
    • pp.174-181
    • /
    • 2011
  • A new registration method for IR image and EO image is proposed in this paper. IR sensor is applicable to many area because it absorbs thermal radiation energy unlike EO sensor does. However, IR sensor has difficulty to extract and match features due to low contrast compared to EO image. In order to register both images, we used modified SIFT(Scale Invariant Feature Transform) and block processing to increase feature distinctiveness. To remove outlier, we applied RANSAC(RANdom SAample Concensus) for each block. Finally, we unified matching features into single coordinate system and remove outlier again. We used 3~5um range IR image, and our experiment result showed good robustness in registration with IR image.

Thermal Deformation Measurement of Notched Structure Using Global-local Multi-DIC System (전역-국부 다중 DIC 시스템을 이용한 노치 구조물의 열변형 계측)

  • Xin, Ruihai;Doan, Nguyen Vu;Goo, Nam Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.617-626
    • /
    • 2021
  • During supersonic flight of vehicles, the thermal behavior of structures under high-temperature environment is important for thermal-structural design. In this study, full-field thermal deformation and stress concentration of the notched structure was performed using global-local multi-digital image correlation (multi-DIC) systems. This techniques were developed and implemented by multi-DIC systems consists of 2D DIC system and 3D DIC system. The specimen was heated in a heating chamber to achieve the thermal expansion behavior. Then the images of structure's deformation and stress concentration at various temperature were recorded and analyzed by multi-DIC system. Afterward, full-field thermal deformation of the notched structure was determined with DIC technique and stress concentration at the notched structure was calculated by further processing. Finite element analysis of the notched structure is performed in ABAQUSTM and the results of the experiments show good agreement with those obtained from simulation. The results achieved in this study show the efficiency of the muilti-DIC method in thermal deformation as well as stress concentration of notched structure.

A Study on Manufacture of Phosphor Screen for Video Phone Tube (Video Phone Tube用 형광박의 제조에 관한 연구)

  • Woo, Jin-Ho
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.2
    • /
    • pp.123-138
    • /
    • 2004
  • The video phone tube (VPT) of monochrome CRT have utilized home door phone, fish-finder and the rear watch monitors. Phosphor screen formation is made by electrodeposition spin coating and thermal transfer methods etc. Recently, thermal transfer method was developed, as a novel method, to form the phosphor surface for mnonchrom VPT. This method have advantages of simple process, automatization, clean environment, saving raw material and saving running-cost. In this study, it was developed new phosphor of VPT, and tested about phosphor paste properties. An experimental studies of VPT as a new phosphor property and improved VPT's manufacturing process shortening and brightness. As thermal transper method is a paste processing, it is important that rheology of phosphor effects on the formation of phosphor screen. Hence this paper was studied rheology properties of phosphor paste and the formation of phosphor screen had looked most suitable condition. Experimented thermal separation properties of low calcination temperature resin and the result analyzed comparison by TGA. Also, examined calcination properties to reduce remaining binder phosphor.

  • PDF