• 제목/요약/키워드: Thermal Image Camera

Search Result 193, Processing Time 0.024 seconds

Thermo-Analysis of Machining Center Main-Axis Thermo-Displacement for Infrared Rays Thermo-Image Camera (적외선 열화상 카메라를 이용한 머시닝 센터 주축 열변위에 관한 열해석)

  • Kim, Jae-Yeol;Yoon, Sung-Un;Yim, Noh-Bin;Yu, Sin;Ma, Sang-Dong;Yang, Dong-Jo;Song, In-Suk
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.125-130
    • /
    • 2001
  • Diagnosis or measurements using Infrared thermo-image hasn t been available. A quick diagnosis and thermal analysis can be possible when that kind of system is introduced to the investigation of each part. In this study, Infrared Camera, Thermo-vision 900 was used in order to investigate. Infrared Camera usually detects only Infrared wave from the light in order to illustrate the temperature distribution. Infrared diagnosis system can be applied to various field. Also, it is more effective to analyze temperature distribution on the machining center main-axis process.

  • PDF

The Construction of Quality Inspection System for Sunroof Sealer Application Process Using SVM Algorithm (SVM 알고리즘을 활용한 선루프 실러도포 공정 품질검사 시스템 구축)

  • Yang, Hee-Jong;Jang, Gil-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.83-88
    • /
    • 2021
  • Recently, due to the aging of workers and the weakening of the labor base in the automobile industry, research on quality inspection methods through ICT(Information and Communication Technology) convergence is being actively conducted. A lot of research has already been done on the development of an automated system for quality inspection in the manufacturing process using image processing. However, there is a limit to detecting defects occurring in the automotive sunroof sealer application process, which is the subject of this study, only by image processing using a general camera. To solve this problem, this paper proposes a system construction method that collects image information using a infrared thermal imaging camera for the sunroof sealer application process and detects possible product defects based on the SVM(Support Vector Machine) algorithm. The proposed system construction method was actually tested and applied to auto parts makers equipped with the sunroof sealer application process, and as a result, the superiority, reliability, and field applicability of the proposed method were proven.

Drone Infrared Thermography Method for Leakage Inspection of Reservoir Embankment (드론 열화상활용 저수지 제체 누수탐사)

  • Lee, Joon Gu;Ryu, Yong Chul;Kim, Young Hwa;Choi, Won;Kim, Han Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.21-31
    • /
    • 2018
  • The result of examination of diagnostic method, which is composed of a combination of a thermal camera and a drone that visually shows the temperature of the object by detecting the infrared rays, for detecting the leakage of earth dam was driven in this research. The drone infrared thermography method was suggested to precise safety diagnosis through direct comparing the two method results of electrical resistivity survey and thermal image survey. The important advantage of the thermal leakage detection method was the simplicity of the application, the quickness of the results, and the effectiveness of the work in combination with the existing diagnosis method.

Development of Calibration Target for Infrared Thermal Imaging Camera (적외선 열화상 카메라용 캘리브레이션 타겟 개발)

  • Kim, Su Un;Choi, Man Yong;Park, Jeong Hak;Shin, Kwang Yong;Lee, Eui Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.248-253
    • /
    • 2014
  • Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

Evaluating Reliability of Rooftop Thermal Infrared Image Acquired at Oblique Vantage Point of Super High-rise Building (초고층건물의 사각조망에서 촬영된 지붕표면 열화상의 신뢰도 평가)

  • Ryu, Taek-Hyoung;Um, Jung-Sup
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.51-59
    • /
    • 2013
  • It is usual to evaluate the performance of the cool roof by measuring in-site rooftop temperature using thermal infra-red camera. The principal advantage of rooftop thermal infrared image acquired in oblique vantage point of super high-rise building as a remote sensor is to provide, in a cost-effective manner, area-wide information required for a scattered rooftop target with different colors, utilizing wide view angle and multi-temporal data coverage. This research idea was formulated by incorporating the concept of traditional remote sensing into rooftop temperature monitoring. Correlations between infrared image of super high-rise building and in-situ data were investigated to compare rooftop surface temperature for a total of four different rooftop locations. The results of the correlations analyses indicate that the rooftop surface temperature by the infrared images of super high-rise building alone could be explained yielding $R^2$ values of 0.951. The visible permanent record of the oblique thermal infra-red image was quite useful in better understanding the nature and extent of rooftop color that occurs in sampling points. This thermal infrared image acquired in oblique vantage point of super high-rise made it possible to identify area wide patterns of rooftop temperature change subject to many different colors, which cannot be acquired by traditional in-site field sampling. The infrared image of super high-rise building breaks down the usual concept of field sampling established as a conventional cool roof performance evaluation technique.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho, Jai-Wan;Jung, Hyun-Kyu;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.273-275
    • /
    • 2005
  • Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

  • PDF

Thermal Infrared Image Analysis for Breast Cancer Detection

  • Min, Sedong;Heo, Jiyoung;Kong, Youngsun;Nam, Yunyoung;Ley, Preap;Jung, Bong-Keun;Oh, Dongik;Shin, Wonhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1134-1147
    • /
    • 2017
  • With the rise in popularity of photographic and video cameras, an increasing number of fields are now using thermal imaging cameras. One such application is in the diagnosis of breast cancer, as thermal imaging provides a low-cost and noninvasive method. Thermal imaging is particularly safe for pregnant women, and those with large, dense, or sensitive breasts. In addition, excessive doses of radiation, which may be used in traditional methods of breast cancer detection, can increase the risk of cancer. This paper presents one method of breast cancer detection. Breast images were taken using a thermal camera, with preliminary experiments conducted on Cambodian women. Then the experimental results were analyzed and compared using Shannon entropy and logistic regression.

Unattended fire detection system using a wireless communication device (무선통신 단말기를 이용한 무인화재 감지시스템)

  • Chang, Rak-Ju;Lee, Soon-Yi;Kang, Suk-Won
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.25-26
    • /
    • 2015
  • The Unattended fire detection system using a wireless communication device is designed in this paper. If a fire occurs in some area, the system can detect and automatically extinguish the fire. The major functions for the system are: Unattended detection system for fire based on wireless communication system and Automatic extinguish device system; Thermal imaging camera and video camera system; Monitoring viewer and map viewer system.

  • PDF

Multi Bands Focus Detection Algorithm (주파수 대역 특성을 이용한 초점 검출 알고리즘)

  • Choi, Jong-Seong;Han, Young-Seok;Kang, Moon-Gi
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.825-826
    • /
    • 2008
  • Focusing is the principal factor that decides the image quality. In the low illuminance condition, captured images with a digital camera usually blurred because the autofocus system of the camera fail to detect the in-focus position. The failure of focusing is due to thermal noise in the captured image. In this paper, we propose a new focus detection algorithm. The proposed algorithm use the new focusing index which is weighted sum of the high-frequency energy and mid-frequency energy. The weight is determined by the local variance of the image. The proposed algorithm performs stable focusing detection with in the low illuminance condition.

  • PDF

Design of a PIV objective maximizing the image signal-to-noise ratio

  • Chetelat Olivier;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.123-137
    • /
    • 2001
  • PIV (particle image velocimetry) systems use a camera to take snapshots of particles carried by a fluid at some precise instants. Signal processing methods are then used to compute the flow velocity field. In this paper, the design of the camera objective (optics) is addressed. The optimization is done in order to maximize the signal-to-noise ratio of in-focus particles. Four different kinds of noise are considered: photon shot noise, thermal and read noise, background glow shot noise, and noise made by the other particles. A semi-empirical model for the lens aberrations of a two-doublet objective is first addressed, since further, it is shown that lens aberrations (low f-value $f_{\#}$) should be used instead of the Fraunhofer diffraction (high f-value) for the fitting of the particle image size with the pixel size. Other important conclusions of the paper include the expression of optimum values for the magnification M, for the exposure period $\tau$ and for the pixel size $\xi$.

  • PDF