• Title/Summary/Keyword: Thermal Image Camera

Search Result 193, Processing Time 0.025 seconds

Inspection of Calandria Reactor Area of Wolsung NPP using Thermal Infrared and CCD Images (CCD와 적외선 열영상의 다중영상을 이용한 월성원자력발전소의 칼란드리아 전면부 점검)

  • Cho, Jai-Wan;Choi, Young-Soo;Kim, Chang-Hoi;Seo, Yong-Chil;Kim, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.711-714
    • /
    • 2002
  • Thermal infrared camera have poor image qualities compared to commercial CCD cameras, as in contrast, brightness, and. resolution. To compensate the poor Image quality problems associated with the thermal infrared camera, the technique of superimposing thermal infrared image into real ccd image is proposed. The mobile robot KAEROT/m2, loaded with sensor head system at the mast, is entered to monitor leakage of heavy water and thermal abnormality of the calandria reactor area in overhaul period. The sensor head system is composed of thermal infrared camera and cod camera In parallel. When thermal abnormality on observation points and areas of calandria reactor area is occurred, unusual hot image taken from thermal infrared camera is superimposed on real CCD image. In this inspection experiment, more accurate positions of thermal abnormalities on calandria reactor area can be estimated by using technique of mapping thermal infrared image into CCD image, which include characters arranged in MPOQ order.

  • PDF

Small Camera Module for TEC-less Uncooled Thermal Image (TEC-less 비냉각 열영상 검출기용 소형카메라 모듈 개발)

  • Kim, Jong-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • Thermal imaging is mainly used in military equipment required for night observation. In particular, technologies of uncooled thermal imaging detectors are being developed as applied to low-cost night observation system. Many system integrators require different specifications of the uncooled thermal imaging camera but their development time is short. In this approach, EOSYSTEM has developed a small size, TEC-less uncooled thermal imaging camera module with $32{\times}32mm$ size and low power consumption. Both domestic detector and import detector are applied to the EOSYSTEM's thermal imaging camera module. The camera module contains efficient infrared image processing algorithms including : Temperature compensation non-uniformity correction, Bad/Dead pixel replacement, Column noise removal, Contrast/Edge enhancement algorithms providing stable and low residual non-uniformity infrared image.

Image Matching Algorithm for Thermal Panorama Image Construction Adaptable for Fire Disasters (화재상황에서 적용가능한 열화상 카메라의 파노라마 촬영을 위한 동일점 추출 알고리즘)

  • Gwak, Dong-Gi;Kim, Dong Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.895-903
    • /
    • 2016
  • In a fire disaster in a tunnel, people should be rescued immediately using the information obtained from cameras or sensors. However, in heavy smoke from a fire, people cannot be clearly identified by a mounted CCTV, which is only effective in a clear environment. A thermal camera can be an alternative to this in smoky situations and is capable of detecting people from their emitted thermal energy. On the other hand, the thermal image camera has a smaller field of view than an ordinary camera due to its lens characteristics and temperature error, etc. In order to cover a relatively wide area, panoramic image construction needs to be implemented. In this work, a template-based similarity matching algorithm for constructing the panorama image is proposed and its performance is verified through experiments. This scheme provides guidelines for coping with difficulty in image construction, which requires an exact correspondence search for two images in cases of heavy smoke.

Image Processing using Thermal Infrared Image (열적외선 이미지를 이용한 영상 처리)

  • Jeong, Byoung-Jo;Jang, Sung-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1503-1508
    • /
    • 2009
  • This study applied image processing techniques, constructed to real-time, to thermal infrared camera image. Thermal infrared image data was utilized for hot mapping, cool mapping, and rainbow mapping according to changing temperature. It was histogram image processing techniques so that detected shade contrast function of the thermal infrared image, and the thermal infrared image's edge was extracted to classification of object. Moreover, extraction of temperature from image was measured by using the image information program.

Thermal Design and On-Orbit Thermal Analysis of 6U Nano-Satellite High Resolution Video and Image (HiREV) (6U급 초소형 위성 HiREV(High Resolution Video and Image)의 광학 카메라의 열 설계 및 궤도 열 해석)

  • Han-Seop Shin;Hae-Dong Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.257-279
    • /
    • 2023
  • Korea Aerospace Research Institute has developed 6U Nano-Satellite high resolution video and image (HiREV) for the purpose of developing core technology for deep space exploration. The 6U HiREV Nano-Satellite has a mission of high-resolution image and video for earth observation, and the thermal pointing error between the lens and the camera module can occur due to the high temperature in camera module on mission mode. The thermal pointing error has a large effect on the resolution, so thermal design should solve it because the HiREV optical camera is developed based on commercial products that are the industrial level. So, when it operates in space, the thermal design is needed, because it has the best performance at room temperature. In this paper, three passive thermal designs were performed for the camera mission payload, and the thermal design was proved to be effective by performing on-orbit thermal analysis.

Pseudo-RGB-based Place Recognition through Thermal-to-RGB Image Translation (열화상 영상의 Image Translation을 통한 Pseudo-RGB 기반 장소 인식 시스템)

  • Seunghyeon Lee;Taejoo Kim;Yukyung Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.48-52
    • /
    • 2023
  • Many studies have been conducted to ensure that Visual Place Recognition is reliable in various environments, including edge cases. However, existing approaches use visible imaging sensors, RGB cameras, which are greatly influenced by illumination changes, as is widely known. Thus, in this paper, we use an invisible imaging sensor, a long wave length infrared camera (LWIR) instead of RGB, that is shown to be more reliable in low-light and highly noisy conditions. In addition, although the camera sensor used to solve this problem is an LWIR camera, but since the thermal image is converted into RGB image the proposed method is highly compatible with existing algorithms and databases. We demonstrate that the proposed method outperforms the baseline method by about 0.19 for recall performance.

Method Development for Estimating Concentration of Airborne Fungi Using a Thermal Imaging Camera (열화상 카메라를 이용한 공기 중 부유 진균 농도 추정방법 개발에 관한 연구)

  • Kim, Ki Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.465-471
    • /
    • 2015
  • Objectives: An objective of this study is to apply a thermal image camera which shows various color according to temperature of indoor surface for estimating concentration of airborne fungi. Materials and Methods: While wall temperature were monitored by applying the thermal image camera, airborne bacteria as well as air temperature and relative humidity have been measured in lecture room and toilet of university for seven months. Results: Based on the results obtained from this study, the ranges of temperature and airborne fungi concentration were $20{\sim}24^{\circ}C$ and $20{\sim}400cfu/m^3 $ for red image, $17.5{\sim}20^{\circ}C$ and $35{\sim}150cfu/m^3$ for orange image, $15.5{\sim}17.5^{\circ}C$ and $25{\sim}650cfu/m^3$ for sky-blue image, and $13.5{\sim}15.5^{\circ}C$ and $50{\sim}200cfu/m^3$ for blue image, respectively. The color of indoor surface taken shot by thermal image camera showed consistent trend with temperature of indoor surface. There is, however, little correlation between color of indoor surface and airborne fungi concentration(p>0.05). Among environmental factors, relative humidity in indoor air showed a significant relationship with airborne fungi concentration(p<0.05). Conclusions: The more measurement data for proving statistically an association between color of indoor surface and airborne fungi concentration should be provided to easily estimate indoor level of airborne fungi.

A Basic Study to Reveal the Relationships between Solar Thermal Radiation and Thermographic Images (태양 복사와 열화상이미지의 관계에 대한 기초 연구)

  • Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2020
  • Among the factors that must be taken into account when using thermal imaging cameras that are expanding their application to various fields, a basic study was conducted focusing on temperature on the effect of solar radiation on the photographed thermal image. Through all experiments, in order to use an image taken with a thermal imaging camera for an object installed or located outdoors, a separate temperature correction according to the size of solar radiation or a separate device to block the effect of solar radiation must be additionally installed. Since the temperature of the same object may vary in the thermal image taken indoors or outdoors, it is necessary to calibrate it through comparison with other temperatures as a reference point. In the case of measuring the temperature of a glossy surface such as metal indoors with a thermal imaging camera, it was confirmed that an environment that can remove the light reflection effect by the glossy surface must be constructed and photographed.

A Study on the Degradation of Insulators using Thermal Image Camera (열상카메라를 이용한 애자의 열화에 관한 연구)

  • Kim, Jeong-Tae;Kim, Ji-Hong;Koo, Ja-Yoon;Yoon, Ji-Ho;Ham, Gil-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1933-1935
    • /
    • 2000
  • In this paper, it was tried to find out the minimum measurement range in the diagnosis of insulators using thermal image camera, for the purpose, leakage currents and thermal images were observed simultaneously for the insulators of which surface had been artificially polluted by salt fog. As a result. the surface temperature was increased with leakage currents. Also, the results of AC breakdown tests for the insulator of which temperature rise was more than 1 $^{\circ}C$ showed to be bad. Therefore, through the study on the relationship between leakage current, temperature rise and AC breakdown voltages, the diagnosis of the insulator in site would be possible using the thermal image camera.

  • PDF

Inspection of Calandria Reactor Surface of Wolsung Nuclear Power Plant using Thermal Infrared Camera mounted on the Mobile Robot KAEROT/m2

  • Cho, Jai-Wan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.578-578
    • /
    • 2002
  • Thermal infrared imaging is a highly promising technology for condition monitoring and predictive maintenance of electronic, electrical and mechanical elements in nuclear power plants. However, conventional low-cost infrared imaging systems suffer from poor spatial resolution compared to commercial CCD cameras. This paper describes an approach to enhance inspection performances for calandria reactor area of Wolsung nuclear power plant through the technique of superimposing thermal infrared image into real CCD image. In the occurrence of thermal abnormalities on observation points and areas of calandria reactor area, unusual hot image taken from thermal infrared camera is mapped upon real CCD image. The performance of the technique has been evaluated in the experiment carried out at Wolsung nuclear power plant in the overhaul period. The results show that localizations of thermal abnormalities on calandria reactor face can be estimated accurately.

  • PDF