• Title/Summary/Keyword: Thermal Fatigue Resistance

Search Result 90, Processing Time 0.023 seconds

Fracture load and survival of anatomically representative monolithic lithium disilicate crowns with reduced tooth preparation and ceramic thickness

  • Nawafleh, Noor A;Hatamleh, Muhanad M;Ochsner, Andreas;Mack, Florian
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.416-422
    • /
    • 2017
  • PURPOSE. To investigate the effect of reducing tooth preparation and ceramic thickness on fracture resistance of lithium disilicate crowns. MATERIALS AND METHODS. Specimen preparation included a standard complete crown preparation of a typodont mandibular left first molar with an occlusal reduction of 2 mm, proximal/axial wall reduction of 1.5 mm, and 1.0 mm deep chamfer (Group A). Another typodont mandibular first molar was prepared with less tooth reduction: 1 mm occlusal and proximal/axial wall reduction and 0.8 mm chamfer (Group B). Twenty crowns were milled from each preparation corresponding to control group (n=5) and conditioned group of simultaneous thermal and mechanical loading in aqueous environment (n=15). All crowns were then loaded until fracture to determine the fracture load. RESULTS. The mean (SD) fracture load values (in Newton) for Group A were 2340 (83) and 2149 (649), and for Group B, 1752 (134) and 1054 (249) without and with fatigue, respectively. Reducing tooth preparation thickness significantly decreased fracture load of the crowns at baseline and after fatigue application. After fatigue, the mean fracture load statistically significantly decreased (P<.001) in Group B; however, it was not affected (P>.05) in Group A. CONCLUSION. Reducing the amount of tooth preparation by 0.5 mm on the occlusal and proximal/axial wall with a 0.8 mm chamfer significantly reduced fracture load of the restoration. Tooth reduction required for lithium disilicate crowns is a crucial factor for a long-term successful application of this all-ceramic system.

Evaluation of Physical and Mechanical Characteristics of Korean Epoxy Asphalt Mixtures (국산 에폭시 아스팔트 혼합물의 물리.역학적 특성 평가)

  • Kim, Byung-Hun;Baek, Jong-Eun;Lee, Hyun-Jong;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • This study evaluated the performance of Korean epoxy asphalt mixtures using several laboratory tests. Four types of epoxy asphalt mixtures were manufactured based on 13mm dense graded asphalt mixtures: three Korean and one Japanese epoxy asphalt mixtures where 20% or 40% of asphalt binder was replaced by epoxy resins. Curing time was determined as 3 and 6 hours for the mixtures containing 40% and 20% of epoxy resins, respectively. From the laboratory tests including wheel tracking, indirect tension fatigue, bending beam, and moisture susceptibility tests, it was concluded that the epoxy asphalt mixtures had superior performance than conventional asphalt mixtures except moisture susceptibility. Also, the performance of the Korean epoxy asphalt mixtures was comparable to the Japanese mixtures. Thermal coefficient, bond strength, and indirect tension tests were conducted to examine the applicability of the Korean epoxy asphalt mixtures to concrete repair. Its adhesion was strong enough to be bonded to surrounding concrete materials and its tensile strength was comparable to the concrete, but thermal expansion coefficient was 5 times greater than the surrounding concrete.

The Study on the Microstructure and Mechanical Properties of the Nodular Indefinite Chilled Iron Containing Ni (Ni 함유 NICI(Nodular Indefinite Chilled Iron)의 미세조직과 기계적성질에 관한 연구)

  • Baek, Eung-Ryul;Oh, Seok-Jung;Villando, Thursdiyanto
    • Journal of Korea Foundry Society
    • /
    • v.26 no.4
    • /
    • pp.180-183
    • /
    • 2006
  • The effects of adding Ni on microstructure and mechanical properties of Nodular Indefinite Chilled Iron (NICI) were studied. Thermal fatigue, hardness, tensile properties, wear resistance, are very important factors for NICI used for hot working roll and wire rod mill. The results show that addition 4% nickel has changed pearlite to bainite. Bainite matrix is superior to pearlite matrix on wear resistance, hardness and strength and will increase performance lifetime of NICI conventional roll material. Based in the bainitic microstructure, hardness and tensile property increase up to 48 HRc and $72\;kg/mm^2$, respectively.

The Improvement of 2nd Level Solder Joint Reliability fur Flip Chip Ball Grid Array (플립 칩 BGA에서 2차 레벨 솔더접합부의 신뢰성 향상)

  • Kim, Kyung-Seob;Lee, Suk;Chang, Eui-Goo
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.90-94
    • /
    • 2002
  • FC-BGA has advantages over other interconnection methods including high I/O counts, better electrical performance, high throughput, and low profile. But, FC-BGA has a lot of reliability issues. The 2nd level solder joint reliability of the FC-BGA with large chip on laminate substrate was studied in this paper. The purpose of this study is to discuss solder joint failures of 2nd level thermal cycling test. This work has been done to understand the influence of the structure of package, the properties of underfill, the properties and thickness of bismaleimide tiazine substrate and the temperature range of thermal cycling on 2nd level solder joint reliability. The increase of bismaleimide tiazine substrate thickness applied to low modulus underfill was improve of solder joint reliability. The resistance of solder ball fatigue was increased solder ball size in the solder joints of FC-BGA.

High Temperature Properties of the High Speed Steel Roll of Hot Finishing Mill (열간 압연용 고속도강 롤의 고온 특성)

  • Kim, Tae-Woo;Choi, Jin-Won;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.124-131
    • /
    • 1996
  • High temperature properties such as hot hardness and thermal fatigue resistance of high speed steel roll of hot finishing mill have been investigated. Two kinds of roll having compositions, Fe-1.75%C-5.9%Cr-1.74%Mo-4.94%V-2.03%W(A specimen) and Fe-2.27%C-8.86%Cr-2.91%Mo-3.92%V-1.86%W(B specimen)were prepared for investigating the microstructure and crack propagation mode. A specimen has greater amounts of $M_7C_3$ type carbides and less amounts of MC type carbides in comparison with B specimen. Hot hardness showed sudden decrease over $400^{\circ}C$, resulting in the hardness decrease of 50% at the temperature of $600^{\circ}C$, and showed little variation with time at $500^{\circ}C$ and $800^{\circ}C$. Thermal crack was developed at $550^{\circ}C$ in A specimen and $600^{\circ}C$ in B specimen.

  • PDF

Lead-free Solder Alloys (무연솔더합금)

  • 이호영
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.218-231
    • /
    • 2002
  • As the environmental regulation worldwide emerges, most notably in Europe and Japan, the elimination of Pb usage in electronic assemblies has been an important issue for microelectronics assembly due to the inherent toxicity of Pb. This has provided an impetus towards the development of Pb-free solders. A major factor affecting alloy selection is the melting point, since this will have a major impact on the other polymeric materials used in microelectronic assembly and encapsulation. Other important manufacturing issues are cost, availability, and wetting characteristics. Reliability related properties include mechanical strength, fatigue resistance, coefficient of thermal expansion and reactivity with substrate. In this article, Pb-free solder alloys have been proposed so far have been reviewed and are summarized.

A Case Study for Improving the Manufacturing Process of Composite Main Wing for Small Aircraft (소형 항공기 주익 복합재료 적용 사례 분석을 통한 개선 방향 연구)

  • Cho, Il-Ryun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.96-102
    • /
    • 2015
  • Composite materials are widely used as structural materials for manufacturing an aircraft, due to their : low weight, low thermal expansion coefficient, production efficiency, anisotropy, corrosion resistance and long fatigue life. The range of using composite materials has been extended from the fuselage and the wings to the entire aircraft structure. In this paper, by analyzing the problems which were generated while designing and fabricating aircraft structures using composite materials, the differences between metallic structures and composite structures are described. In addition, the methodological improvement directions on design and fabricating are described.

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

Fatigue Phenomenon of Mechanical Properties in Tencel Fabrics by Repeated Washing & Shear and Tensile Deformation (반복세탁 및 전단·인정변형에 따른 텐셀직물의 피로도)

  • Kwon, Oh-Kyung;Yi, Chang-Mi;Kim, Myo-Hyang;Park, Hee-Ung
    • Fashion & Textile Research Journal
    • /
    • v.1 no.3
    • /
    • pp.288-295
    • /
    • 1999
  • This study was conducted to examine the fatigue phenomenon of mechanical properties in tencel fabrics by repeated washing & shear and tensile deformation. The obtained results are as follows. After performing repeated shear tensile deformation, RT of tencel showed higher increase rate than that of cotton and rayon, whereas its WT and EM was a smaller decrease rate than that of them. This means that tencel's resistance to tensile deformation was the greatest. In the repeated washing and shear tensile deformation, tencel's 2HB, 2HG and 2HG5 showed a remarkable increase rate. In terms of deformation frequency, the greatest change rate appeared at the time of 1000 cycles of repeated shear tensile deformation and 15 times of repeated washing. In the hand value and THV, KOSHI showed a higher increase rate for tencel than for cotton and rayon in both repeated washing and shear tensile deformation, and NUMERI showed a higher increase rate. In the THV the change rate of rayon and cotton could be rarely seen but for tencel, it decreased. tencel's change rate of thermal insulation value by materials was 1.08%, and it increased as the washing frequency increased, compared to the grey fabrics, whereas the change rates of cotton and rayon were 0.74% and 0.22%, respectively. The qmax decreased in the order of cotton>tencel>rayon as the washing frequency increased.

  • PDF