• Title/Summary/Keyword: Thermal Fatigue

Search Result 572, Processing Time 0.026 seconds

A Study on Shaft Fatigue Strength due to Torsional Vibrations in Two Stroke Low Speed Diesel Engines (저속 2행정 디젤엔진의 과도 비틀림 진동에 의한 축계 피로 강도에 관한 연구)

  • Lee, D.C.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.786-791
    • /
    • 2006
  • Two stroke low speed diesel engines are mainly used for marine propulsion or power plant prime mover. These have many merits such as higher thermal efficiency, mobility and durability. However various annoying vibrations sometimes occur in ships or at the plant itself. Of these vibrations, torsional vibration is very important and it should be carefully investigated during the initial design stage for engine's safe operation. In this paper authors suggest a new estimation method of for shaft's can be calculated equivalently from accumulated fatigue cycles number due to torsional vibration. The 6S70MC-C($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study, and the accumulated fatigue cycles numbers for shafting life time converted from the measured angular velocity and torsional vibration stress was calculated. This new method can be realized and confirmed in test model ship with two stroke low speed diesel engine.

  • PDF

Degradation Prediction of Piezo-Composite Actuator under Cyclic Electric Field (반복하중을 받는 압전 복합재료 작동기의 피로 특성)

  • Setiawan Hery;Goo Nam Seo;Yoon Kwang Joon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.286-289
    • /
    • 2004
  • This paper presents the fatigue characteristics of LIPCA (LIghtweight Piezo-Composite Actuator) device system. The LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced lightweight composite layers. Typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. The advantages of the LIPCA design are weight reduction by using the lightweight fiber reinforced plastic layers without compromising the generation of high force and large displacement and design flexibility by selecting the fiber direction and the size of prepreg layers. To predict the degradation of actuation performance of LIPCA due to fatigue, the cyclic electric loading tests using PZT specimens were performed and the strain for a given excitation voltage was measured during the test. The results from the PZT fatigue test were implemented into CLPT (Classical Laminated Plate Theory) model to predict the degradation of LIPCA's actuation displacement. The fatigue characteristic of PZT was measured using a test system composed of a supporting jig, a high voltage power supplier, data acquisition board, PC, and evaluated.

  • PDF

Development of Green's Functions for Fatigue Damage Evaluation of CANDU Reactor Coolant System Components (CANDU형 원전 주요기기의 피로손상 평가를 위한 그린함수 개발)

  • Kim, Se Chang;Sung, Hee Dong;Choi, Jae Boong;Kim, Hong Key;Song, Myung Ho;Nho, Seung Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.38-43
    • /
    • 2011
  • For the efficient and safe operation of nuclear power plant, evaluating quantitatively aging phenomenon of major components is necessary. Especially, typical aging parameters such as stresses and cumulative usage factors should be determined accurately to manage the lifetime of the plant facility. The 3-D finite element(FE) model is generated to calculate the aging parameters. Mechanical and thermal transfer functions called Green's functions are developed for the FE model with standard step input. The stress results estimated from transfer functions are verified by comparing with 3-D FE analyses results. Lastly, we suggest an effective fatigue evaluation methodology by using the transfer functions. The usefulness of the proposed fatigue evaluation methodology can be maximized by combining it with an on-line monitoring system.

Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method (시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성)

  • NAM KI-WOO;LEE KUN-CHAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.

Retention and Fatigue Properties of MFS Devices using Ferroelectric $LiMbO_3$ Thin Films ($LiMbO_3$ 강유전체 박막을 이용한 MFS 디바이스의 Retention 및 Fatigue 특성)

  • 정순원;김채규;김용성;김진규;이남열;김광호;유병곤;이원재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.17-20
    • /
    • 1999
  • The retention and fatigue properties of ferroelectric LiNbO$_3$ thin films were studied. Metal-ferroelectric-semiconductor(MFS) devices by using rapid thermal annealed LiNbO$_3$/Si structures were successfully fabricated and demonstrated nonvolatile memory operations of the MFS devices. The I$_{D}$-V$_{G}$ characteristics of MFSFET\`s showed a hysteresis loop due to the ferroelectric nature of the LiNbO$_3$ thin film. The ferroelectric capacitors showed practically no polarization degradation up to about 10$^{10}$ switching cycles when subjected to symmetric bipolar voltage pulse (peak-to-peak 6V, 50% duty cycle) in the 500kHz. The retention properties of the LiNbO$_3$ thin films were quite good up to about 10$^{3}$ s . s .

  • PDF

Predictions of Fatigue Life of Copper Alloy for Regenerative Cooling Channel of Thrust Chamber (연소기 재생냉각 채널용 구리합금의 피로수명예측)

  • Lee, Keumoh;Ryu, Chulsung;Heo, Seongchan;Choi, Hwanseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.73-82
    • /
    • 2017
  • Low-cycle thermal fatigue problem resulting from multiple use of a liquid rocket engine has to be considered for the development of a reusable launch vehicle. In this study, life prediction equations suggested by previous researchers were compared as applied to various copper alloy cases to predict fatigue lives from tensile test data. The present study has revealed that among the presently considered life prediction methods, universal slopes method provides the best life prediction result for the copper alloys, and the modified Mitchell's method provides the best life prediction result for oxygen free high conductivity (OFHC) copper.

Corrosion Failure Analysis of Condensate Pre-Heater in Heat Recovery Steam Generator (배열회수보일러 복수예열기 부식 파손 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Kim, Kyung Min;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.69-76
    • /
    • 2021
  • In this work, we have performed a corrosion failure analysis of a leaking tube connected to an upper header of a condensate pre-heater in a heat recovery steam generator. It was revealed that the leakage position in the tube was the location where the materials were easily vulnerable due to tensile residual stresses induced by the material manufacturing process and welding process. In addition to an imbalance in the module induced by temperature difference during operation of the pre-heater, the weight of the modules and thermal fatigue provoked a type of stress of tensile-tensile fatigue on the tube. Thus, the leakage position of the pre-heater was exposed to the tensile stress on the inner surface of the tube facing the gas, which rendered the unstable oxide layer susceptible to corrosion and the formation of pits on the water side. The cracks propagated along with the degraded microstructure in a transgranular cracking mode under fatigue loading and finally resulted in water leakage.

Development for Life Assessment System for Pipes of Thermal Power Plants

  • Hyun, Jung-Seob;Heo, Jae-Sil;Kim, Doo-Young;Park, Min-Gyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.583-588
    • /
    • 2016
  • The high-temperature steam pipes of thermal power plants are subjected to severe conditions such as creep and fatigue due to the power plant frequently being started up and shut down. To prevent critical pipes from serious damage and possible failure, inspection methods such as computational analysis and online piping displacement monitoring have been developed. However, these methods are limited in that they cannot determine the life consumption rate of a critical pipe precisely. Therefore, we set out to develop a life assessment system, based on a three-dimensional piping displacement monitoring system, which is capable of evaluating the life consumption rate of a critical pipe. This system was installed at the "M" thermal power plant in Malaysia, and was shown to operate well in practice. The results of this study are expected to contribute to the increase safety of piping systems by minimizing stress and extending the actual life of critical piping.

A Feasibility Study on the Use of Autogeneous GTAW for Correction of Distortions in Welded Aluminum Alloy Structures (알루미늄 熔接構造物의 變形橋正을 위한 Autogeneous GTAW의 適用 可能性 硏究)

  • 하용훈;강춘식;유순영
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.20-34
    • /
    • 1992
  • Characteristics of two correcting methods, a new Autogeneous GTAW heating (TIG) method and the conventional GMAW bead-on plate welding(MIG) method, for distorted aluminum fabrication structures were studied. As a result of microscopic study of Autogeneous GTAW heating and GMAW bead-on plate welding areas, porosities in weld metal and surface cracks in local heating zone were found. Through the mechanical tests, it was verified that porosities decrease tensile strength and surface of distortion, angular displacement and transeverse shrinkage were measures and compared. In order to investigate changes of material properties in heating area and cause of defects such thermal stresses were calculated by ADINA. Through the computations of transient thermal stresses and microscopic observation of fracture surface, thermal stress was found to be the cause of crack during Autogeneous GTAW heating.

  • PDF

A Study on the Mechanical Strength Change by Thermal Aging of 2.25Cr-1Mo Steel (발전설비용 2.25Cr-1Mo 강의 시효에 의한 기계적 강도 특성 변화에 대한 연구)

  • Yang, Hyeon-Tae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1771-1778
    • /
    • 2000
  • The purpose of this study is to investigate the thermal embrittlement and the mechanical properties of 2.25Cr-1Mo steel aged at high temperature for the extended periods. Original, aged artificiall y and used material were tested to obtain the tensile strength, hardness and impact absorbed energy. Tensile strength, hardness and impact absorbed energy decreased with the increasing aging time. The carbide morphology with the thermal embrittlement was found to contribute to the mechanical property change by X-Ray diffraction method.