• Title/Summary/Keyword: Thermal Error Model

Search Result 198, Processing Time 0.034 seconds

Analytical and Numerical Model Study to Predict the Temperature Distribution Around an Underground Food Cold Storage Pilot Cavern (냉동저장 공동 주변의 온도분포 예측을 위한 해석해 및 수치모델 적용에 관한 연구)

  • 이대혁;김호영
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.142-151
    • /
    • 2002
  • Claesson(2001)'s analytical solution, and two numerical models with Dirichlet and Neuman interior boundary condition respectively were investigated to estimate the transient temperature distribution with distances from the Taejon underground food cold storage pilot cavern. Claesson's solution, which is based on constant temperature boundary condition at the rock wall during a temperature decline step, showed relatively good agreement with temperature measurements in the rock mass in order of average error difference, 0.89$\^{C}$ without any adjustments on laboratory thermal properties to represent the rock mass. For the numerical model with heat flux through the rock wall, a boundary condition setting technique was newly proposed to overcome the difficulty of prescribing variable convective heat tranfer coefficient and far-field air temperature inside the cavern as they may be certainly changed according to the cooling-down time. The results showed also good agreement with measurements in order of average error difference, 1.58$\^{C}$, and were compared to those of the numerical model with fixed temperature at the rock wall. Finally, the most proper procedure to precisely predict the temperature profile around a cavern was proposed as a series of analysis steps including an analytical exact solution and numerical models.

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.

Developing a Model to Predict Road Surface Temperature using a Heat-Balance Method, Taking into Traffic Volume (교통량을 고려한 열수지법에 의한 노면온도 예측모형의 구축)

  • Son, Young-Tae;Jeon, Jin-Suk;Whang, Jun-Mun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.30-38
    • /
    • 2015
  • In this study, to improve effectiveness of road management services and the safety of the road in winter, road surface temperature prediction model was developed. We have utilized the existing input data of meteorological data and additional traffic data. This Road surface temperature prediction model was utilizing a Heat-Balance Method additionally considering amount of traffic that produce heat radiation by vehicle-tire friction. This improved model was compared to the based model to check into influence of traffic affecting the road surface temperature. There were verified by comparing the real observed road surface temperature of the third Gyeong-In highway and road surface temperature from the two models. As a result, the error of real observed and the predicted value (RMSE) was found to average $1.97^{\circ}C$. Observed road surface temperature was dramatically affected by the sunlight from 6 a.m. to 2 p.m. and degree of influence decreases after that. The predictive value of the model is lower than the observed value in the afternoon, and higher at night. These results appear due to the shielding of solar radiation caused by the vehicle in the afternoon and at night, the vehicle appeared to cause thermal heat supply.

Function approximation of steam table using the neural networks (신경회로망을 이용한 증기표의 함수근사)

  • Lee, Tae-Hwan;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.459-466
    • /
    • 2006
  • Numerical values of thermodynamic properties such as temperature, pressure, dryness, volume, enthalpy and entropy are required in numerical analysis on evaluating the thermal performance. But the steam table itself cannot be used without modelling. From this point of view the neural network with function approximation characteristics can be an alternative. the multi-layer neural networks were made for saturated vapor region and superheated vapor region separately. For saturated vapor region the neural network consists of one input layer with 1 node, two hidden layers with 10 and 20 nodes each and one output layer with 7 nodes. For superheated vapor region it consists of one input layer with 2 nodes, two hidden layers with 15 and 25 nodes each and one output layer with 3 nodes. The proposed model gives very successful results with ${\pm}0.005%$ of percentage error for temperature, enthalpy and entropy and ${\pm}0.025%$ for pressure and specific volume. From these successful results, it is confirmed that the neural networks could be powerful method in function approximation of the steam table.

Function Approximation for Refrigerant Using the Neural Networks (신경회로망을 사용한 냉매의 함수근사)

  • Park, Jin-Hyun;Lee, Tae-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.677-680
    • /
    • 2005
  • In numerical analysis on the thermal performance of the heat exchanger with phase change fluids, the numerical values of thermodynamic properties are needed. But the steam table should be modeled properly as the direct use of thermodynamic properties of the steam table is impossible. In this study the function approximation characteristics of neural networks was used in modeling the saturated vapor region of refrigerant R12. The neural network consists of one input layer with one node, two hidden layers with 10 and 20 nodes each and one output layer with 7 nodes. Input can be both saturation temperature and saturation pressure and two cases were examined. The proposed model gives percentage error of ${\pm}$0.005% for enthalpy and entropy, ${\pm}$0.02% for specific volume and ${\pm}$0.02% for saturation pressure and saturation temperature except several points. From this results neural network could be a powerful method in function approximation of saturated vapor region of R12.

  • PDF

Simulation of Heat and Smoke Behavior for Wood and Subway Fires by Fire Dynamics Simulator(FDS) (FDS에 의한 목재 및 지하철 화재의 열 및 연기 거동 시뮬레이션)

  • Sonh, Yun-Suk;Dan, Seung-Kyu;Lee, Bong-Woo;Kwon, Seong-Pil;Shin, Dong-Il;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In this study, to propose the analysis method of heat and smoke behavior of fire using the CFD-based fire simulator FDS, comparison of the simulation results against the experimental results and the sensitivity of the results to the grid sizes have been investigated. For the wood fire, thermal images captured from the experiments were compared against the FDS simulations, and the maximum temperatures agreed in~4.3 % error, showing the applicability of FDS in the interpretation of the fire phenomena. In the aspect of the sensitivity to the grid size for the subway fire, FDS results of smoke temperature, CO concentration and visibility converged and showed no distinct changes for the grid size < $28(L){\times}28(W){\times}14(H)$, guaranteeing that the FDS fire model set in this research could interpret the fire phenomena successfully.

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인 보간법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.685-690
    • /
    • 2008
  • In numerically evaluating the thermal performance of the heat exchanger, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be directly used without modelling. In this study the applicability of neural networks in modelling superheated water vapor was examined. The multi-layer neural networks consist of an input layer with 2 nodes, two hidden layers with 15 and 25 nodes respectively and an output layer with 3 nodes. Quadratic spline interpolation was also applied for comparison. Neural networks model revealed smaller percentage error compared with spline interpolation. From this result, it is confirmed that the neural networks could be a powerful method in modelling the superheated water vapor.

The Analysis of Flood in an Ungauged Watershed using Remotely Sensed and Geospatial Datasets (II) - Focus on Estimation of Flood Inundation - (원격탐사와 공간정보를 활용한 미계측 유역 홍수범람 해석에 관한 연구(II) - 침수 피해면적 산정을 중심으로 -)

  • Son, Ahlong;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.797-808
    • /
    • 2019
  • This study evaluated the applicability of spacebourne datasets to the flood analysis in an ungauged watershed where is no discharge measurements. The Duman River basin of North Korea was selected as a target area which was flooded by recent Typhoon Lionrock. Topographical parameters for flood analysis were estimated from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM). GDEM includes the shortcomings of information on river cross-section, and conducted 2 dimensional flood analysis when considering virtual river cross-section and not considering it. As a result of comparative analysis, an error occurs in the inundation area and depth, but when used carefully, it is considered that the satellite image can be used for creating flood hazard map and utilizing information for response and preparation.

Massive MIMO with Transceiver Hardware Impairments: Performance Analysis and Phase Noise Error Minimization

  • Tebe, Parfait I.;Wen, Guangjun;Li, Jian;Huang, Yongjun;Ampoma, Affum E.;Gyasi, Kwame O.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2357-2380
    • /
    • 2019
  • In this paper, we investigate the impact of hardware impairments (HWIs) on the performance of a downlink massive MIMO system. We consider a single-cell system with maximum ratio transmission (MRT) as precoding scheme, and with all the HWIs characteristics such as phase noise, distortion noise, and amplified thermal noise. Based on the system model, we derive closed-form expressions for a typical user data rate under two scenarios: when a common local oscillator (CLO) is used at the base station and when separated oscillators (SLOs) are used. We also derive closed-form expressions for the downlink transmit power required for some desired per-user data rate under each scenario. Compared to the conventional system with ideal transceiver hardware, our results show that impairments of hardware make a finite upper limit on the user's downlink channel capacity; and as the number of base station antennas grows large, it is only the hardware impairments at the users that mainly limit the capacity. Our results also show that SLOs configuration provides higher data rate than CLO at the price of higher power consumption. An approach to minimize the effect of the hardware impairments on the system performance is also proposed in the paper. In our approach, we show that by reducing the cell size, the effect of accumulated phase noise during channel estimation time is minimized and hence the user capacity is increased, and the downlink transmit power is decreased.

Analysis of the Relationship between Three-Dimensional Built Environment and Urban Surface Temperature (도시의 3차원 물리적 환경변수와 지표온도의 관계 분석)

  • Li, Yige;Lee, Sugie;Han, Jaewon
    • Journal of Korea Planning Association
    • /
    • v.54 no.2
    • /
    • pp.93-108
    • /
    • 2019
  • This study examines the relationship between three-dimensional urban built environment and urban surface temperature using LANDSAT 8 satellite image data in Seoul city. The image was divided into 600m×600m grid units as an unit of analysis. Due to the high level of spatial dependency in surface temperature, this study uses spatial statistics to take into account spatial auto-correlation. The spatial error model shows the best goodness of fit. The analysis results show that the three-dimensional built environment and transport environment as well as natural environment have statistically significant associations with surface temperature. First, natural environment variables such as green space, streams and river, and average elevation show statistically significant negative association with surface temperature. Second, the building area shows a positive association with surface temperature. In addition, while sky view factor (SVF) has a positive association with surface temperature, surface roughness (SR) shows a negative association with it. Third, transportation related variables such as road density, railway density, and traffic volume show positive associations with surface temperature. Moreover, this study finds that SVF and SR have different effects on surface temperature in regard to the levels of total floor areas in built environment. The results indicate that interactions between floor area ratio (FAR) and three-dimensional built environmental variables such as SVF and SR should be considered to reduce urban surface temperature.