• Title/Summary/Keyword: Thermal Environments

Search Result 508, Processing Time 0.021 seconds

Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Winter (겨울철 사무실내 온열환경 특성 및 쾌적성 평가)

  • Bae, G.N.;Lee, C.H.;Lee, C.S.;Choi, H.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.310-318
    • /
    • 1995
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 138 occupants were questioned to evaluate Korean thermal comfort in office building in winter. Thermal sensation was estimated by using PMV(Predicted Mean Vote) and ET*(New Effective Temperature) indices. Comparing present experimental result with international standards and that of other research, Korean thermal responses were discussed. Seasonal difference between summer and winter was also discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained; TSV=0.432ET*-8.814 and neutral temperature is $20.4^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $19.4{\sim}22.4^{\circ}C$.

  • PDF

Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Summer (여름철 사무실내 온열환경 특성 및 쾌적성 평가)

  • Lee, C.H.;Bae, G.N.;Choi, H.C.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.206-217
    • /
    • 1994
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 212 occupants were questioned to evaluate Korean thermal comfort in office building in summer. Thermal and comfort sensations were estimated using PMV(Predicted Mean Vote) and ET* (New Effective Temperature) which are most widely used nowadays. Comparing this experimental result with international standards and that of other research, Korean thermal responses were discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained: TSV=0.461ET*-11.808 and neutral temperature is $25.6^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $24.0{\sim}26.8^{\circ}C$, which is about $1^{\circ}C$ higher than that of ANSI/ASHRAE Standard.

  • PDF

Aanalysis the Structure of Heat Environment in Daegu Using Landsat-8 (Landsat-8을 활용한 대구시 열 환경구조 분석)

  • Kim, Jun Hyun;Choi, Jin Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.327-333
    • /
    • 2014
  • To improve thermal environments in urban area, the structural characteristic analysis of thermal environments of the certain area should be preceded to analyze and supplement its problems. With Landsat-8, we measured the centrality estimation, the distribution map, and the spatial statistical analysis of Daegu Metropolitan City in January and August, which of data applied in analyzing the structure of thermal environments following to its spatial property. The thermal infrared band of satellite images has been used to analyze the standard normal deviated scores, which extract the centrality, while the cluster map, based upon Local Local Moran's I, has composed for understanding the autocorrelation of local spatial within environment space structure. Understanding the distribution features as well as the pivot center of thermal environments with satellite images provides principle database for updating urban thermal environments' policies and plans; because those are reference materials that should have precedence over for diverse thermal environment policies.

A Study on the Thermal Protection Performance of Elastomeric Insulators in Different Mixing Environments (탄성내열재 배합 환경에 따른 내열 성능 변화에 관한 연구)

  • Kim, Namjo;Seo, Sangkyu;Kang, Yoongoo;Go, Cheongah
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.108-115
    • /
    • 2019
  • The thermal response of elastomeric insulators used as protection against high-temperature and high-pressure combustion gases varies depending on their composition and thermal environment conditions. In this paper, the thermal response characteristics of elastomeric insulators in different mixing environments were compared. Tests to determine thermal protection performance were carried out using a thermal protection rubber evaluation motor(TPREM), combustion gas velocities of 20 m/s and 100 m/s were tested at a chamber pressure of 1,000 psig. The pressure time curve of the chamber, the temperature time curve of the internal materials, the residual thickness and the thermal destruction depth of the test specimens were obtained. The results showed that the thermal protection performance of elastomeric insulators in different mixing environments was similar.

Effects of Noise on Indoor Thermal Sensation and Comfort (소음이 실내 온열감과 온열쾌적감에 미치는 영향)

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Purpose: Thermal sensation or thermal comfort was randomly used in many studies which focused on combined effects of thermal and acoustic environments on human perception. However, thermal sensation and thermal comfort are not synonyms. Thermal comfort is more complex human perception on thermal environment than thermal sensation. This study aims to investigate effects of noise on thermal sensation and thermal comfort separately, and also to investigate effects of temperature on acoustic sensation and comfort. Method: Combined thermal and acoustic configurations were simulated in an indoor environmental chamber. Twenty four participants were exposed to two types of noise (fan and babble) with two noise levels (45 dBA and 60 dBA) for an hour in each thermal condition of PMV-1.53, 0.03, 1.53, 1.83, respectively. Temperature sensation, temperature preference, thermal comfort, noisiness, loudness, annoyance, acoustic comfort, indoor environmental comfort were evaluated in each combined environmental condition. Result: Noise did not affected thermal sensation, but thermal comfort significantly. Temperature had an effect on acoustic comfort significantly, but no effect on noisiness and loudness in overall data analysis. More explicit interactions between thermal condition and noise perception showed only with the noise level of 60 dBA. Impacts of both thermal comfort and acoustic comfort on the indoor environmental comfort were analyzed. In adverse thermal environments, thermal comfort had more impact than acoustic comfort on indoor environmental comfort, and in neutral thermal environments, acoustic comfort had more important than thermal comfort.

Evaluation of thermal characteristics by cutting environments in high speed ball end-milling (볼엔드밀을 이용한 고속가공에서 가공환경 변화에 따른 열특성 평가)

  • 이채문
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.34-38
    • /
    • 2000
  • The trend of cutting process today goes toward higher precision and higher efficiency. Many thermal/frictional troubles occur in high-speed machining of die and mold steels.In this paper, the thermal characteristics are evaluated in high sped ball end-milling of hardened steel(HRc42). Experimental work is performed on the effect of cutting environments on tool life and cutting temperature. Cutting environments involve dry, wet(20bar), compressed chilly air at -9$^{\circ}C$, compressed chilly air at -35$^{\circ}C$. The measuring technique of cutting temperature using implanted thermocouple is used. The cutting temperature is about 79$0^{\circ}C$, 35$0^{\circ}C$ and 54$0^{\circ}C$ in dry, wet and compressed chilly air at +9$^{\circ}C$, respectively. The tool life for compressed chilly air at -9$^{\circ}C$ is longer than all other cutting environments in experiment.

  • PDF

A study of a thermal energy equipment for controlling airborne microorganisms in indoor laboratory environments (열에너지 활용 부유미생물 제어장치 설계 및 실험실 실내공기를 대상으로 한 성능측정에 관한 연구)

  • Kim, Hyun Geon;Hwang, Gi Byung;Lee, Jun Hyun;Lee, Byung Uk
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Airborne microorganisms, termed bioaerosols, are etiological agents of many respiratory and skin diseases. There are high demands of controlling the concentration of bioaerosols, specifically in indoor environments. Here, a new system for controlling indoor bioaerosols is designed and evaluated. An idea of a short time exposure to a thermal energy is used in the design of the equipment. The system was tested in laboratory environments. The experimental results show that the new system can reduce the concentration of viable bioaerosols of indoor laboratory environments.

  • PDF

Design of Filament Wound Composite Tubes under Thermal Contraction (열수축을 하는 필라멘트 와인딩 복합재료 관의 설계)

  • 정태은;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2407-2417
    • /
    • 1993
  • Thermal deformations and stresses due to temperature changes are the serious problems in cryogenic structures such as the torque tube in a superconducting generator, In this paper, the equations of thermal expansion coefficients expressed only by material properties and winding angles are derived for the filament wound composite tubes. The experimental results of thermal contraction of CFRP tubes are compared with those from theoretical approach. Composite tubes with optimally regulated thermal expansion coefficient are designed on the basis of the study for the torque tube in the superconducting generator with temperature distributions varying from 300K to 4.2 K. The filament winding angle of composites resisting thermal stresses properly is sought by the finite element method using layered shell elements. The results show that the composite tubes designed for the requirements in cryogenic environments can effectively cope with the thermal stress problem.

Development of thermal comfort measurment system to establish emotion and sensibility engineering data base (감성공학 DB 구축을 위한 열적쾌적성 측정 시스템 개발)

  • 한화택;박명규;이성수;천효성;박성준
    • Science of Emotion and Sensibility
    • /
    • v.6 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • The objective of the present study is to develop a thermal comfort measurement system for ergonomic sensibility analysis. The system can measure basic components for thermal comfort, such as skin temperature and clothing temperature/humidity level. A study on the linearization of temperature and humidity sensors has been conducted for more accurate and stable sensor development. The software has been developed for thermal comfort analysis for both clothing thermal environments and indoor environments.

  • PDF