• Title/Summary/Keyword: Thermal Energy Management

Search Result 252, Processing Time 0.028 seconds

A Study on the Influence of Boiling Heat Transfer of Nanofluid with Particle Length and Mixing Ratio of Carbon Nanotube (탄소나노튜브 입자의 길이와 혼합비율이 나노유체의 비등 열전달에 미치는 영향에 대한 연구)

  • Park, Sung-Seek;Kim, Woo Joong;Kim, Jong Yoon;Jeon, Yong-Han;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • A boiling heat transfer system is used in a variety of industrial processes and applications, such as refrigeration, power generation, heat exchangers, cooling of high-power electronics components, and cooling of nuclear reactors. The critical heat flux (CHF) is the thermal limit during a boiling heat transfer phase change; at the CHF point, the heat transfer is maximized, followed by a drastic degradation beyond the CHF point. Therefore, Enhancement of CHF is essential for economy and safety of heat transfer system. In this study, the CHF and heat transfer coefficient under the pool-boiling state were tested using multi-wall carbon nanotubes (MWCNTs) CM-95 and CM-100. These two types of multi-wall carbon nanotubes have different sizes but the same thermal conductivity. The results showed that the highest CHF increased for both MWCNTs CM-95 and CM-100 at the volume fraction of 0.001%, and that the CHF-increase ratio for MWCNT CM-100 nanofluid with long particles was higher than that for MWCNT CM-95 nanofluid with short particles. Also, at the volume fraction of 0.001%, the MWCNT CM-100 nanofluid indicated a 5.5% higher CHF-increase ratio as well as an approximately 23.87% higher heat-transfer coefficient increase ratio compared with the MWCNT CM-95 nanofluid.

Analysis of suppressed thermal conductivity using multiple nanoparticle layers (다중층 나노구조체를 통한 열차단 특성 제어)

  • Tae Ho Noh;Ee Le Shim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • In recent years, energy-management studies in buildings have proven useful for energy savings. Typically, during heating and cooling, the energy from a given building is lost through its windows. Generally, to block the entry of ultraviolet (UV) and infrared (IR) rays, thin films of deposited metals or metal oxides are used, and the blocking of UV and IR rays by these thin films depends on the materials deposited on them. Therefore, by controlling the thicknesses and densities of the thin films, improving the transmittance of visible light and the blocking of heat rays such as UV and IR may be possible. Such improvements can be realized not only by changing the two-dimensional thin films but also by altering the zero-dimensional (0-D) nanostructures deposited on the films. In this study, 0-D nanoparticles were synthesized using a sol -gel procedure. The synthesized nanoparticles were deposited as deep coatings on polymer and glass substrates. Through spectral analysis in the UV-visible (vis) region, thin-film layers of deposited zinc oxide nanoparticles blocked >95 % of UV rays. For high transmittance in the visible-light region and low transmittance in the IR and UV regions, hybrid multiple layers of silica nanoparticles, zinc oxide particles, and fluorine-doped tin oxide nanoparticles were formed on glass and polymer substrates. Spectrophotometry in the UV-vis-near-IR regions revealed that the substrates prevented heat loss well. The glass and polymer substrates achieved transmittance values of 80 % in the visible-light region, 50 % to 60 % in the IR region, and 90 % in the UV region.

Estimation of Decay Heat Generated from Long-Term Management of Spent Fuel (장기관리 핵연료로부터 방출되는 붕괴열량 추정)

  • Park, J.W.;J.H.Whang;Chun, K.S.;Park, H.S.
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.48-55
    • /
    • 1989
  • In this study, simple functional forms which could predict decay heat are referred to and modified in order to analyse more easily long-term behavior of decay heat generated from domestic PWR and CANDU spent fuel. To reduce the difference between the predicted data by functional forms and ORIGEN 2 results and to predict the decay heat under the important parameter(s), sensitivity analysis is performed. By introducing the identified hey parameter, turnup, into the functional forms, the decay heat of spent fuels within a limited rangs of cooling time(3~500 years) becomes predictable for various turnup rates. The predicted decay heat of spent fuels with representative turnup rates such as 33, 37 and 40 GWD/MTU by the functional forms is in so good agreement with ORIGEN 2 results within $\pm$10% difference over the cooling time from 1 to 10$^{5}$ years that the functional forms presented here may be used for engineering purposes such as the thermal design and assessment of the facilities associated with spent fuel management.

  • PDF

A Delphi Study on Competencies of Future Green Architectural Engineer (근미래 친환경 건축분야 엔지니어에게 필요한 역량에 대한 델파이 연구)

  • Kang, So Yeon;Kim, Taeyeon;Lee, Jungwoo
    • Journal of Engineering Education Research
    • /
    • v.21 no.3
    • /
    • pp.56-65
    • /
    • 2018
  • With rapid advance of technologies including information and communication technologies, jobs are evolving faster than ever. Architectural engineering is no exception in this regard, and the green architectural engineering is emerging fast as a promising new field. In this study, a Delphi study of expert architectural engineers are conducted to find out (1) near future prospects of the field, (2) near future emerging jobs, (3) competencies needed for these jobs, and (4) educational content necessary to build these competencies with regards to the green architectural engineering. Initial Delphi survey consisting of open-ended questions in the above four areas were conducted and came out with 65 items after duplicate removal and semantic refinements. Further refinements via second and third wave of Delphi results into 40 items that the 13 architectural engineering experts may largely agree upon as future prospects with regards to the green architectural engineering. Findings indicate that it is expected that the demand for green architectural engineering and needs for automatic energy control system increase. Also, collaborations with other fields is becoming more and more important in green architectural engineering. The professional work management skills such as knowledge convergence, problem solving, collaboration skills, and creativity linking components from various related areas seem to also be on the increasing need. Near future ready critical skills are found to be the building environment control techniques (thermal, light, sound, and air), the data processing techniques like data mining, energy monitoring, and the control and utilization of environmental analysis software. Experts also agree on new curriculum for green building architecture to be developed with more of converging subjects across disciplines for future ready professional skills and experiences. Major topics to be covered in the near future includes building environment studies, building energy management, energy reduction systems, indoor air quality, global environment and natural phenomena, and machinery and electrical facility. Architectural engineering community should be concerned with building up the competencies identified in this Delphi preparing for fast advancing future.

An Improved Concept of Deep Geological Disposal System Considering Arising Characteristics of Spent Fuels From Domestic Nuclear Power Plants (국내 원자력발전소에서의 사용후핵연료 발생 특성을 고려한 심층 처분시스템 개선)

  • Lee, Jongyoul;Kim, Inyoung;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.405-418
    • /
    • 2019
  • Based on spent fuels characteristics from domestic nuclear power plants and a disposal scenario from the current basic plan for high-level radioactive waste management, an improved disposal system has been proposed that enhances disposal efficiency and economic effectiveness compared to the existing disposal system. For this purpose, two disposal canisters concepts were derived from the length of the spent fuel generated from the nuclear power plants. In the disposal scenario, the acceptable amount of decay heat for each disposal container was determined, taking into account the discharge and disposal times of spent fuels in accordance with the current basic plan. Based on the determined decay heat of the two types of disposal canisters and the associated disposal system, thermal stability analyses were performed to confirm their suitability to the proposed disposal system design requirement and disposal efficiency assessment. The results of this study confirm 20% reduction in the disposal area and 20% increase in disposal density for the proposed disposal system compared to the existing system. These results can be used to establish a spent fuel management policy and to design a viable commercial disposal system.

A Novel of Solar Heat Collection Device Prototype using Parabolic based on Solar Light Tracking (태양광 추적기반의 파라볼릭을 이용한 태양열 집열장치 프로토타입에 관한 연구)

  • Jung, Se-Hoon;Sim, Chun-Bo;Park, Sung-Kyun;Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.411-420
    • /
    • 2016
  • Efforts have continued in recent years to research and develop new alternative energy sources to replace coal and oil. These days interest is exploding in new pollution-free renewable energy due to the rising prices of finite energy sources. In the field of solar energy, one of new renewable energy that has been actively researched and commercialized, research efforts have been focused on solar light energy, whose efficiency has, however, reached a saturation point already. Thus, this paper proposed a solar tracking-type parabolic heat collection device to utilize solar thermal energy rather than solar light energy. The proposed device was designed in a parabolic form to collect solar heat effectively. The investigator made its prototype by incorporating a five-axis censor-based solar tracking technology in it to sense changes to the location of the sun according to the seasons and periods. In addition, an administrator interface was designed and implemented for the efficient management of heat collection device.

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave

  • Byun, Sun-Joon;Kwak, Dong-Kurl
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.104-114
    • /
    • 2019
  • Energy is an essential driving force for modern society. In particular, electricity has become the standard source of power for almost every aspect of life. Electric power runs lights, televisions, cell phones, laptops, etc. However, it has become apparent that the current methods of producing this most valuable commodity combustion of fossil fuels are of limited supply and has become detrimental for the Earth's environment. It is also self-evident, given the fact that these resources are non-renewable, that these sources of energy will eventually run out. One of the most promising alternatives to the burning of fossil fuel in the production of electric power is the proton exchange membrane (PEM) fuel cell. The PEM fuel cell is environmentally friendly and achieves much higher efficiencies than a combustion engine. Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoustic methods is presented. Piezo-actuators are devices to generate the flexural wave and are attached at end of a cathode bipolar plate. The "flexural wave" is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

Comparison of Two Methods for Estimating the Appearance Probability of Seawater Temperature Difference for the Development of Ocean Thermal Energy (해양온도차에너지 개발을 위한 해수온도차 출현확률 산정 방법 비교)

  • Yoon, Dong-Young;Choi, Hyun-Woo;Lee, Kwang-Soo;Park, Jin-Soon;Kim, Kye-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.94-106
    • /
    • 2010
  • Understanding of the amount of energy resources and site selection are required prior to develop Ocean Thermal Energy (OTE). It is necessary to calculate the appearance probability of difference of seawater temperature(${\Delta}T$) between sea surface layer and underwater layers. This research mainly aimed to calculate the appearance probability of ${\Delta}T$ using frequency analysis(FA) and harmonic analysis(HA), and compare the advantages and weaknesses of those methods which has used in the South Sea of Korea. Spatial scale for comparison of two methods was divided into local and global scales related to the estimation of energy resources amount and site selection. In global scale, the Probability Differences(PD) of calculated ${\Delta}T$ from using both methods were created as spatial distribution maps, and compared areas of PD. In local scale, both methods were compared with not only the results of PD at the region of highest probability but also bimonthly probabilities in the regions of highest and lowest PD. Basically, the strong relationship(pearson r=0.96, ${\alpha}$=0.05) between probabilities of two methods showed the usefulness of both methods. In global scale, the area of PD more than 10% was less than 5% of the whole area, which means both methods can be applied to estimate the amount of OTE resources. However, in practice, HA method was considered as a more pragmatic method due to its capability of calculating under various ${\Delta}T$ conditions. In local scale, there was no significant difference between the high probability areas by both methods, showing difference under 5%. However, while FA could detect the whole range of probability, HA had a disadvantage of inability of detecting probability less than 10%. Therefore it was analyzed that the HA is more suitable to estimate the amount of energy resources, and FA is more suitable to select the site for OTE development.

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.

A Study on Development of Porous SiC Ceramic Heat Sink from Solar Wafering Slurry (태양광 웨이퍼링 슬러리 재생 다공성 SiC 세라믹 히트싱크 개발에 관한 연구)

  • An, Il-Yong;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2002-2008
    • /
    • 2012
  • In recent years, while the importance of thermal management has been emphasized due to smaller electronic products, various materials have been used as heat sink. In this study, porous ceramic heat sink was developed with SiC, successfully separated from the slurry of SiC occurring in solar energy materials industry and the thermal performance of porous SiC heat sink has been compared with those of aluminum heat sink and pure SiC heat sink through experiment. From the experimental results, it was verified that porous recycled SiC heat sink has better thermal performance than aluminum heat sink since its micropores increase the heat transfer area. In addition, the effect of the micropores on thermal performance has been quantified by increasing convective heat transfer coefficient with numerical analysis.