• 제목/요약/키워드: Thermal Energy

검색결과 7,403건 처리시간 0.043초

축열시스템의 종류 및 열에너지 공급시스템에서의 역할 (Classification and function of the Storage System in the Thermal Energy Supply System)

  • 이동원;조수;장철용
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.141-146
    • /
    • 2008
  • For the efficient use of thermal energy and its related equipments, optimal energy in view of quality and quantity should be timely provided. The core of thermal energy storage technology deals with an energy efficiency for effective energy storage and supply. The relative importance of thermal energy storage technology has been underestimated so far, and the specific projects on this filed have been performed intermittently. For the efficient and systematic approach of the energy supply system projects on thermal energy storage technology, we conduct the survey on the current status of this field. Firstly, classify into the thermal energy storage and describing the recent research for each system. The necessity and importance of thermal energy storage technology is identified through this study. It reveals that the thermal energy storage is the mandatory technology to solve the difference of supply and demand in thermal loads. It would greatly contribute to the combined heat and power(CHP) system. The urgent technologies for the commercial value and the core technologies for the CHP system are classified with this study.

  • PDF

지하 열에너지 저장 기술 및 스웨덴 암반공동내 열수 저장 사례 (Technologies of Underground Thermal Energy Storage (UTES) and Swedish Case for Hot Water)

  • 박도현;김형목;류동우;최병희;선우춘;한공창
    • 터널과지하공간
    • /
    • 제22권1호
    • /
    • pp.1-11
    • /
    • 2012
  • 열에너지 저장은 고온 또는 저온의 열에너지를 임시 저장하는 것으로서 에너지 수요와 공급 사이의 불균형을 줄일 수 있고, 이를 통해 에너지를 절약하고 에너지 이용효율을 향상시킬 수 있다. 특히 간헐적으로 에너지를 생산하는 신재생에너지의 경우 에너지 저장 장치와의 조합은 필수적이다. 또한 지하 암반의 낮은 열전도도와 높은 열용량을 이용하여 지하에 열에너지를 저장하는 경우 열손실을 최소화하여 추가적인 효율 향상이 기대된다. 본 고에서는 지하 열에너지 저장 기술을 조사 분석하고 스웨덴에 암반공동내 열에너지 저장 사례를 소개하였다.

가변열원에 대응하기 위한 ORC 사이클의 실험적인 연구 (An Experimental Study on the Organic Rankine Cycle to Utilize Fluctuating Thermal Energy)

  • 조수용;조종현
    • 한국유체기계학회 논문집
    • /
    • 제18권4호
    • /
    • pp.13-21
    • /
    • 2015
  • The system design of the Organic Rankine Cycle(ORC) is greatly influenced by the thermal properties such as the temperature or the thermal capacity of heat source. Typically waste heat, solar energy, geothermal energy, and so on are used as the heat source for the ORC. However, thermal energy supplying from these kinds of heat sources cannot be provided constantly. Hence, an experimental study was conducted to utilize fluctuating thermal energy efficiently. For this experiment, an impulse turbine and supersonic nozzles were applied and the supersonic nozzle was used to increase the velocity at the nozzle exit. In addition, these nozzles were used to adjust the mass flowrate depending on the amount of the supplied thermal energy. The experiment was conducted with maximum three nozzles due to the capacity of thermal energy. The experimented results were compared with the predicted results. The experiment showed that the useful output power could be producted from low-grade thermal energy as well as fluctuating thermal energy.

스크류 캡슐형 밀폐식 빙축열시스템의 성능시험에 관한 연구 (Study on the Performance Testing of the Closed Ice Thermal Energy Storage System using Screw Capsules)

  • 김경환
    • 한국태양에너지학회 논문집
    • /
    • 제26권4호
    • /
    • pp.39-45
    • /
    • 2006
  • The decrease in the summer peak electric load in our country is very important. The government has arranged and implemented a lot of support policies and statutes to decrease the peak electric load. And the ice thermal energy storage system is known as one of the alternatives. The purpose of this paper is to evaluate the efficiency and thermal characteristics of the closed ice thermal energy storage system using screw capsules. The measured thermal energy storage density is about 18.4 USRT-h/m3 (=232.9 MJ/m3), which is higher than 13.0 USRT-h/m3 (=164.6 MJ/m3), a low criterion of normal performance. And The efficiency of the discharging process and the total energy utilization is 96.2% and 2028.4 kcal/kWh respectively.

Packed Bed 태양에너지 저장시스템의 열성능에 관한 수학적 시뮬레이션 (Mathematical Simulation on Thermal Performance of Packed Bed Solar Energy Storage System)

  • 아닐쿠마르;김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제26권4호
    • /
    • pp.331-338
    • /
    • 2015
  • Solar air heaters (SAHs) are simple in design and widely used for solar energy collection devices, and a packed bed is one of typical solar energy storage systems of thermal energy captured by SAHs. This paper presents mathematical modeling and simulation on the thermal performance of various packed bed energy storage systems. A MATLAB program is used to estimate the thermal efficiency of packed bed SAH. Among the various packed bed energy storage systems considered, the wire mesh screen packed bed SAH shows the best thermal efficiency over the entire range of design conditions. The maximum of thermal efficiency of packed bed SAH with wire mesh screen matrices has been found to be 0.794 for Re=2000 - 20000 and ${\Delta}T/I=0.002-0.02$.

Dish형 태양열 집광시스템 실증연구를 위한 집열성능 특성 분석 (A Characteristic Analysis on the Thermal Performance of the Dish Type Solar Concentrating System)

  • 강명철;강용혁;윤환기;유성연
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.7-12
    • /
    • 2006
  • The dish type solar thermal concentrating system can collect the solar energy above $800^{\circ}C$. It has a concentration ratio of 800 and total reflector area of $49m^2$. To operate solar receivers at high temperature, the optimum aperture size is obtained from a comparison between maximizing absorbed energy and minimizing thermal losses. The system efficiency is defined as the absorbed energy by working fluid in receiver divided by the energy coming from the concentrator. We find that system efficiency is stable in case of flow rate of above 6lpm. The system efficiency are 64.9% and 65.7% in flow rate of 6lpm and 8lpm, respectively. The thermal performance showed that the maximum efficiency and the factor of thermal loss in flow rate of 8lpm are 68% and 0.0508.