• 제목/요약/키워드: Thermal Emission

검색결과 1,367건 처리시간 0.027초

Thermal evaporation에 의해 성장된 ZnO nanorod의 합성 온도에 따른 특성 평가

  • 안철현;한원석;강시우;김영이;최미경;공보현;김동찬;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.62-62
    • /
    • 2007
  • ZnO 박막이 성장된 Si기판을 이용하여 Thermal evaporation을 사용하여 온도에 따라 합성된 1-D의 구조의 ZnO nanorods의 형상과 특성에 대하여 연구를 하였다. 합성온도는 $700^{\circ}C{\sim}900^{\circ}C$를 사용하였고 온도가 낮아짐에 따라 Vertical한 1-D ZnO가 합성이 되는 것을 알 수 있었다. 특히, $700^{\circ}C$에서 합성된 1-D ZnO는 ~100nm의 폭을 가지고 800nm의 길이의 Nanorods로 성장이 되는 것을 알 수 있었고, 상온 PL측정을 통해 온도가 증가함에 따라 O 결핍 또는 Zn의 과잉에 의한 Deep level emission이 증가하는 것을 알 수 있었다.

  • PDF

The Effect of Hydrogen Enrichment on Exhaust Emissions and Thermal Efficiency in a LPG fuelled Engine

  • Park, Gyeung-Ho;Han, Sung-Bin;Chung, Yon-Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1196-1202
    • /
    • 2003
  • The concept of hydrogen enriched LPG fuelled engine can be essentially characterized as low emissions and reduction of backfire for hydrogen engine. The purpose of study is obtaining low-emission and high-efficiency in LPG engine with hydrogen enrichment. In order to determine the ideal compression ratio, a variable compression ratio single cylinder engine was developed. The objective of this paper is to clarify the effects of hydrogen enriched LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to minimize abnormal combustion. To maintain equal heating value, the amount of LPG was decreased, and hydrogen was gradually added. In a similar manner, the relative air-fuel ratio was increased from 0.8 to 1.3 in increment of 0.1, and the ignition timing was controlled to be at MBT each case.

국내 부산물 다염화비페닐(PCBs) 배출량 예비 평가 (Preliminary Estimation of National Emission Inventory for the Unintentionally Produced Polychlorinated Biphenyls)

  • 김경미;조규탁;이지윤;이지은;이동수
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권2호
    • /
    • pp.227-233
    • /
    • 2004
  • The main objectives of this study were to identify from literature review the potential sources and to provide a preliminary national emission inventory for the unintentionally produced polychlorinated biphenyls (PCBs) (i.e., by - product PCBs). In Korea, fuel combustion, waste combustion, thermal industrial processes, and transportation were identified as potential sources of by -product PCB s. According to the availability of the emission factors and/or activity data, emission inventory could be assessed only for fuel combustion, waste combustion, steel industry, non-ferrous industry, and non-metallurgical industry. The total national emission of by-product PCBs was estimated to be 1087kg for the year 2000. The preliminary estimation further indicated that the steel manufacturing was the single dominant emission category, contributing 93% to the total emission. Of the steel manufacturing processes, the contribution of the electric arc furnace was about 80% of the total emission. Due to high uncertainty associated with both the emission factors and activity statistics, the emission estimates in this study are likely to contain significant errors. However, the results of the present work could serve the first step toward future efforts to establish national source and emission inventories of by-product PCBs.

고속철도는 고속도로에 비하여 저탄소 친환경적인가? (Does High-Speed Rail Have Superiority over Motorway in Terms of CO2 Emission?)

  • 강태석;장현호
    • 한국도로학회논문집
    • /
    • 제18권5호
    • /
    • pp.83-93
    • /
    • 2016
  • PURPOSES : The aim of this article is to compare and identify eco-friendly competitiveness between (regional) motorway and high-speed rail(HSR) from the perspective of $CO_2$ emission in the Republic of Korea. METHODS : In order for an analysis of low-carbon competitiveness between the two modes, $CO_2e$ emission, $CO_2eppk$ (equivalent $CO_2$ gram per passenger kilometer), is employed as a comparison index. As for HSR, the index is calculated based on the passenger transport data and the gross of $CO_2e$ produced by Kyungbu high-speed line in 2013. Additionally, the gross of $CO_2e$ is computed by the greenhouse gas emission factors of domestic electricity generation mix. Regarding the index of motorway, it is directly calculated using both the official $CO_2e$ emission factor and the passenger-car occupancy of motorway. RESULTS : The results revealed, in the case of inter-regional transport, that the $CO_2e$ emission of displacement-based cars is 54.9% less than that of HSR, as the domestic electric power systems heavily relies on the thermal power plants over 66%. Note that internal combustion engines commonly used for vehicles are more energy-efficient than steam-driven turbines usually utilized for thermal power generation. CONCLUSIONS : It can be seen, at the very least in our study, that HSR has no superiority over motorway in the case of $CO_2e$ emission under the situations of domestic electricity generation mix. In addition, advanced eco-friendly vehicles have strong advantages over HSR. Therefore, all-out efforts should be made to develop and harvest renewable energy sources in order to achieve low-carbon HSR, sparing fossil fuels.

메탄-공기 확산화염에서 수소와 수증기 첨가가 화염구조와 NOx 배출에 미치는 효과 (Effects of Addition of Hydrogen and Water Vapor on Flame Structure and NOx Emission In $CH_4$-Air Diffusion Flame)

  • 박정;길상인;윤진한
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.171-181
    • /
    • 2007
  • Blending effects of hydrogen and water vapor on flame structure and NOx emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane and pure hydrogen to the blending fuels of methane-hydrogen-water vapor through the molar addition of $H_2O$. Flame structure is changed considerably for hydrogen-blending methane flames and hydrogen-blending methane flames diluted with water vapor in comparison to pure methane flame. These complicated changes of flame structures also affect NOx emission behavior considerably. The changes of thermal NO and Fenimore NO are analyzed for various combinations of the fuel composition. Importantly contributing reaction steps to thermal NO and Fenimore NO are addressed in pure methane, hydrogen-blending methane flames, and hydrogen-blending methane flames diluted with water vapor.

최초로 헤테로 원자를 포함하는 폴리(9,9-스파이로 바이플루오렌) 유도체의 합성과 그들의 광학적, 유기전계발광특성 (First Examples of Poly(9,9-spiro bifluorene) Derivatives Containing Heterotoms : Syntheses, Optical, and Electroluminescent Properties)

  • 김명종;이지훈;박종욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.465-465
    • /
    • 2008
  • Conjugated polymers have attracted much scientific and technological research interest during the past few decades because of their potential use such as polymer light-emitting diodes (PLEDs).1,2 Particularly, lots of phenylene-based polymers such as polyfluorene and its derivatives have been synthesized because of their high photoluminescence quantum efficiencies and thermal stabilities. However, troublesome long wavelength emission in polymer film of polyfluorenes on heating during device formation or operation has been the crucial problem for practical applications. The source of the long wavelength emission was initially believed to be solely due to excimer emission as a result of polymer aggregation. It has also recently been correlated with emissions from ketonic defects in the fluorene units. Many efforts have been made to reduce the tendency to red-shifted emission. Here, we report for the first time the design and synthesis of novel 9,9-spiro bifluornene-based polymers containing heteroatoms such as N, S in its molecular skeleton. Especially, the 9,9-spiro bifluornene-based polymers containing N atom showed stable blue electroluminescence, which did not show spectral change upon thermal annealing.

  • PDF

대체에너지 DME를 사용하는 직접분사엔진의 배기특성에 미치는 Cooled EGR의 영향 (Effects of Cooled EGR on Exhaust Emission Characteristics of DI DME Engine)

  • 표영덕;남상훈;김강출;김영길;이영재
    • 한국수소및신에너지학회논문집
    • /
    • 제14권2호
    • /
    • pp.138-145
    • /
    • 2003
  • There are high expectations for DME(Dimethyl Ether) as a new alternative fuel for diesel engine. Compared with the conventional diesel engine, nearly zero soot emission and high thermal efficiency have been reported from DME fuelled CI engines. However, higher NOx emission is one of the disadvantages from DME Engines. In the present study, cooled EGR(Exhaust Gas Recirculation) was applied to DME engine modified from conventional Dl diesel engine, and effects of EGR were examined under various EGR temperature. Finally, it was concluded that the cooled EGR is an effective solution to reduce NOx emission from DME engine.

유한요소법과 전계-열전자 방출 모델에 의한 절연유체 내 공간전하 전파해석 (Analysis of Space Charge Propagation in a Dielectric liquid Employing Field-Thermal Electron Emission Model and Finite Element Method)

  • 이호영;이세희
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.2011-2015
    • /
    • 2009
  • In an insulating dielectric liquid such as transformer oil, space charge injection and propagation were analyzed under the Fowler-Nordheim and Richardson-Dushman's thermal emission charge injection conditions for blade-plane electrodes stressed by a step voltage. The governing equations were composed of all five equations such as the Poisson's equation for electric fields, three continuity equations for electrons, negative, and positive ions, and energy balanced equation for temperature distributions. The governing equations for each carrier, the continuity equations, belong to the hyperbolic-type PDE of which the solution has a step change at the space charge front resulting in numerical instabilities. To decrease these instabilities, the governing equations were solved simultaneously by the Finite Element Method (FEM) employing the artificial diffusion scheme as a stabilization technique. Additionally, the terminal current was calculated by using the generalized energy method which is based on the Poynting's theorem, and represents more reliable and stable approach for evaluating discharge current. To verify the proposed method, the discharge phenomena were successfully applied to the blade~plane electrodes, where the radius of blade cap was $50{\mu}m$.

Understanding the Material Removal Mechanisms of Abrasive Water Jet Drilling Process by Acoustic Emission Technique

  • Kwak, Hyo-Sung;Kovacevic, Radovan
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.40-52
    • /
    • 1998
  • Among the non-traditional machining methods, Abrasive waterjet machining process shows big promise in drilling difficult-to-machine materials due to its numerous advantages such as absence of heat affect zone and thermal distortion. Acoustic emission signal technique is used to understand about material removal mechanisms during abrasive waterjet drilling process. More information about the drilling process is derived through frequency decomposition of auto regressive moving average modeling representing acoustic emission signals.

  • PDF

Emission Profile Studies of Thermionic Cathodes and Field Emitters

  • Tawa, Yasuhiro;Kai, Junjiro;Tama, Masayoshi;Ijima, Kenji;Saito, Tsunenari
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.371-375
    • /
    • 2002
  • Emissions of thermionic cathodes and field emitters were studied using a cathode emission profiler which works based on the anode scanning method. Findings about impregnated cathodes in thermal activation and gas poisoning processes are shown. Effects of surface treatments for field emitters are studied from the viewpoint of emission profiles and characteristics of the emitters.

  • PDF