• 제목/요약/키워드: Thermal Diffusion

검색결과 938건 처리시간 0.026초

후확산 공정 변수가 p+ 실리콘 박막의 잔류 응력 분포에 미치는 영향 (Effects of Drive-in Process Parameters on the Residual Stress Profile of the p+ Silicon Film)

  • 정옥찬;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.245-247
    • /
    • 2002
  • The paper represents the effects of the drive-in process parameters on the residual stress profile of the p+ silicon film. For the quantitative determination of the residual stress profiles, the test samples are doped via the fixed boron diffusion process and four types of the thermal oxidation processes and consecutively etched by the improved process. The residual stress measurement structures with the different thickness are simultaneously fabricated on the same silicon wafer. Since the residual stress profile is not uniform along the direction normal to the surface, the residual stress is assumed to be a polynomial function of the depth. All of the coefficients of the polynomial are determined from the deflections of cantilevers and the displacement of a rotating beam structure. As the drive-in temperature or the drive-in time increases, the boron concentration decreases and the magnitude of the average residual tensile stress decreases. Also, near the surface of the p+ film the residual tensile stress is transformed into the residual compressive stress and its magnitude increases.

  • PDF

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

Acid green-25 removal from wastewater by anion exchange membrane: Adsorption kinetic and thermodynamic studies

  • Khan, Muhammad Imran;Ansari, Tariq Mahmood;Zafar, Shagufta;Buzdar, Abdul Rehman;Khan, Muhammad Ali;Mumtaz, Fatima;Prapamonthon, Prasert;Akhtar, Mehwish
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.79-85
    • /
    • 2018
  • In this work, batch adsorption of anionic dye acid green-25 (AG-25) from aqueous solution has been carried out at room temperature using anion exchange membrane (DF-120B) as a noval adsorbent. The effect of various experimental parameters such as contact time, membrane dosage, ionic strength and temperature on the adsorption of dye were investigated. Kinetic models namely pseudo-first-order, pseudo-second-order, Elovich, liquid film diffusion, Bangham and modified freundlich models were employed to evaluate the experimental data. Parameters like adsorption capacities, rate constant and related correlation coefficients for every model are calculated and discussed. It showed that adsorption of AG-25 onto DF-120B followed pseudo-first-order rate expression. Thermodynamic study indicates that adsorption of AG-25 onto DF-120B is an exothermic and spontaneous process.

Influence of Thermodynamic Properties upon Transcritical Nitrogen Injection

  • Tani, Hiroumi;Teramoto, Susumu;Nagashima, Toshio
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.320-329
    • /
    • 2008
  • The influence of thermodynamic transition associated with transcritical nitrogen injection upon the flow structure was investigated to explore numerical simulation of the injectant dynamics of oxygen/hydrogen coaxial jet in liquid rocket engines. Single and coaxial nitrogen jets were treated by comparing the transcritical and perfect-gaseous conditions, wherein the numerical model was accommodative to the real-fluid thermodynamics and transport properties at supercritical pressures. The model was in the first place validated by comparing the results of transcritical nitrogen injection between calculations and available experiments. For a single jet under the transcritical condition, the nitrogen kept a relatively high density up to its pseudo-critical temperature inside the mixing layer, since it remains less expanding until heated up to its pseudo-critical temperature. Numerical analysis revealed that cryogenic jets exhibit strong dependence of specific enthalpy profile upon the associated density profile that are both dominated by turbulent thermal diffusion. In the numerical model, therefore, exact evaluation of turbulent heat fluxes becomes very important for simulating turbulent cryogenic jets under supercritical pressures. Concerning the coaxial jets due to transcritical/gaseous nitrogen injections, the density profile inside the mixing layer was again affected by the thermodynamic transition of nitrogen. However, hydrodynamic instability modes of the inner jet did not show significant differences by this thermodynamic transition, so that further study is needed for the mixing process downstream of the near injection position.

  • PDF

에틸렌-공기 혼합물에서 벽면 온도 감소에 의한 연소폭발천이 현상 변화 (The change of deflagration to detonation transition by wall cooling effect in ethylene-air mixture)

  • 곽민철;김기홍;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.457-462
    • /
    • 2011
  • 본 연구에서는 에틸렌-공기 혼합물에서의 충격파에 의해 유도되는 화염폭발천이현상을 수치적 계산을 통하여 살펴본다. 연구에 사용된 모델은 점성력, 열전단, 몰질량 확산, 그리고 화학 반응을 고려한 Navier-Stokes 방정식으로 관 내부 유동을 해석하였다. 반복되는 압력파와 화염의 상호 작용에 의해 발생되는 화염의 불안정성에 의해 화염면이 증가하게 되는데 이를 통해 화학 반응률의 증가와 더불어 연소열의 상승하게 된다. 이러한 과정들이 반복되면서 발생할 수 있는 연소폭발천이 현상을 벽면 온도 조건의 변화(단열조건과 일정한 온도 조건)에 따라 어떻게 변화 되는지를 모델링하였다.

  • PDF

지열을 이용한 공조외기부하저감 시스템에 관한 연구 - 공기식 집열기와의 병용에 의한 공조외기부하저감 효과 - (Study on Fresh Air Load Reduction System by Using Geothermal Energy - Reducing Effect of a Fresh Air Load by Combining with Air-heated Solar Collector -)

  • 손원득;이성
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1218-1226
    • /
    • 2004
  • This paper presents thermal behaviors and performances of a fresh air load reduction system by using earth tube system combined with air-heated solar collector. The earth tube system reduces a fresh air load by heat exchange with soil throughout the year. In the previous experimental research, it was clarified that the earth tube system was very useful as a fresh air load reduction system. However, since outlet temperature of the fresh air which was heated by earth tube system was below 15$^{\circ}C$ in winter, it is not suitable to introduce the fresh air into the place of residence directly. Therefore, a simulation model using the simple heat diffusion equation was used to examine a rising effect of outlet air temperature in winter by combining with air-heated solar collector. An improvement of annual performance by control of operation is also quantitatively examined. In conclusion, it is confirmed that its performance is improved by control of operation throughout the year and outlet air temperature rose by combining with air-heated solar collector.

An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber

  • Nguyen, Xuan Ha;Kim, ChiHyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.369-376
    • /
    • 2019
  • A complete solution for a soluble-boron-free (SBF) small modular reactor (SMR) is pursued with a new burnable absorber concept, namely centrally-shielded burnable absorber (CSBA). Neutronic flexibility of the CSBA design has been discussed with fuel assembly (FA) analyses. Major design parameters and goals of the SBF SMR are discussed in view of the reactor core design and three CSBA designs are introduced to achieve both a very low burnup reactivity swing (BRS) and minimal residual reactivity of the CSBA. It is demonstrated that the core achieves a long cycle length (~37 months) and high burnup (~30 GWd/tU), while the BRS is only about 1100 pcm and the radial power distribution is rather flat. This research also introduces a supplementary reactivity control mechanism using stainless steel as mechanical shim (MS) rod to obtain the criticality during normal operation. A further analysis is performed to investigate the local power peaking of the CSBA-loaded FA at MS-rodded condition. Moreover, a simple $B_4C$-based control rod arrangement is proposed to assure a sufficient shutdown margin even at the cold-zero-power condition. All calculations in this neutronic-thermal hydraulic coupled investigation of the 3D SBF SMR core are completed by a two-step Monte Carlo-diffusion hybrid methodology.

알루미늄/니켈 나노박막다층 내 수직방향 이종금속 반응파 전파 해석연구 (Numerical Study on Normal Propagation Bimetallic Reaction Wave in Al/Ni Nano-Multilayers)

  • 김경진
    • 한국추진공학회지
    • /
    • 제26권1호
    • /
    • pp.20-27
    • /
    • 2022
  • 본 나노에너지 기술 해석연구에서는 알루미늄/니켈 나노 다층박막구조 내 이종금속 반응파의 박막층 수직방향 전파현상을 대상으로 모델링 및 해석을 진행하였다. Al/Ni층이 교차하는 반무한영역에서 열 및 화학종 확산 방정식을 기반으로 1차원적 전산해석을 수행하였다. 해석결과로 이종금속 반응파의 수직방향 정상 전파 확립 등 반응파 특성을 발견하였다. 수평방향 전파현상 해석과 비교하여 이와 같은 나노구조물에서 반응파 자체전파속도에 대한 방향성 변화 영향이 매우 약하게 나타남을 확인하였다.

제올라이트 기반 투과증발 분리막: 총설 (Zeolite Based Pervaporation Membrane: A Review)

  • 이주엽;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제32권6호
    • /
    • pp.383-389
    • /
    • 2022
  • 막 분리 공정은 다양한 응용 분야에서 사용되는 중요한 기술이다. 이러한 분리 공정은 농도 구배, 압력 또는 전위구배 등의 구동력에 의해 수행된다. 투과증발은 용액 메커니즘에 기초한 분리 과정 중 하나이다. 분리막을 투과한 쪽에서 압력은 진공에 의해 감소되고 분리는 압력차에 의해 구동된다. 다공성 제올라이트 분리막을 통한 탈수 공정에 의해 에탄올 또는 이소프로필 알코올과 같은 연료 및 화학 물질의 순도를 향상시킨다. 이러한 분리막들은 높은 열적, 화학적, 기계적 안정성을 가지고 있다. 이 총설에서는 제올라이트 분리막에 의한 에탄올 회수 및 바이오 오일 탈수라는 두 개의 섹션으로 나누어 소개한다.

Cross section generation for a conceptual horizontal, compact high temperature gas reactor

  • Junsu Kang;Volkan Seker;Andrew Ward;Daniel Jabaay;Brendan Kochunas;Thomas Downar
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.933-940
    • /
    • 2024
  • A macroscopic cross section generation model was developed for the conceptual horizontal, compact high temperature gas reactor (HC-HTGR). Because there are many sources of spectral effects in the design and analysis of the core, conventional LWR methods have limitations for accurate simulation of the HC-HTGR using a neutron diffusion core neutronics simulator. Several super-cell model configurations were investigated to consider the spectral effect of neighboring cells. A new history variable was introduced for the existing library format to more accurately account for the history effect from neighboring nodes and reactivity control drums. The macroscopic cross section library was validated through comparison with cross sections generated using full core Monte Carlo models and single cell cross section for both 3D core steady-state problems and 2D and 3D depletion problems. Core calculations were then performed with the AGREE HTR neutronics and thermal-fluid core simulator using super-cell cross sections. With the new history variable, the super-cell cross sections were in good agreement with the full core cross sections even for problems with significant spectrum change during fuel shuffling and depletion.