• 제목/요약/키워드: Thermal Bubble

검색결과 121건 처리시간 0.111초

액체질소에서의 열적 기포에 의한 절연파괴기구 (Thermal Bubble-Initiated Breakdown Mechanism of $LN_2$)

  • 곽동주;추영배;류강식;류경우;윤문수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.302-305
    • /
    • 1989
  • Ac, dc and impulse dielectric strengths of $LN_2$ at 0.1MPa were investigated experimentally, referring to the behavior of thermally induced bubble, which might be generated at quenching condition of immerged-cooling superconducting devices. The experimental results show that the bubble shape under electric field stress depends significantly on the applied voltage waveform. With ac voltage, the breakdown voltage of $LN_2$ falls suddenly near to one of the saturated gas at the threshold heater power of boiling onset. In control to this, the reduction of impulse breakdown voltage with heater peter is gradual and the time to breakdown depends on the existence of thermal bubble. These breakdown characteristics can be explained satisfactorily by the bubble behavior under electric fields.

  • PDF

인공 캐비티를 가진 히터를 이용한 가열면의 채널 높이가 풀비등시 기포성장에 미치는 영향에 대한 기초연구 (Effect of channel hight on Bubble growth under Saturated Nucleate Pool Boiling for Various Channel Height using Heater with Artificial Cavity)

  • 김정배;박문희;전우철
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.93-99
    • /
    • 2010
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R113 for various channel heights under saturated pool condition. A circular heater of 1mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of channel height on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, and bubble shapes. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

Experimental Study of Heating Surface Angle Effects on Single Bubble Growth

  • Kim, Jeong-Bae;Kim, Hyung-Dae;Lee, Jang-Ho;Kwon, Young-Chul;Kim, Jeong-Hoon;Kim, Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1980-1992
    • /
    • 2006
  • Nucleate pool boiling experiments were performed using pure R11 for various surface angles under constant heat flux conditions during saturated pool boiling. A 1-mm-diameter circular heater with an artificial cavity in the center that was fabricated using a MEMS technique and a high-speed controller were used to maintain the constant heat flux. Bubble growth images were taken at 5000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of the surface angle on the bubble growth behavior were analyzed for the initial and thermal growth regions using dimensional scales. The parameters that affected the bubble growth behavior were the bubble radius, bubble growth rate, sliding velocity, bubble shape, and advancing and receding contact angles. These phenomena require further analysis for various surface angles and the obtained constant heat flux data provide a good foundation for such future work.

Experimental Study on Single Bubble Growth Under Subcooled, Saturated, and Superheated Nucleate Pool Boiling

  • Kim Jeong-Bae;Lee Jang-Ho;Kim Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.692-709
    • /
    • 2006
  • Nucleate pool boiling experiments with constant wall temperature were performed using pure R1l3 for subcooled, saturated, and superheated pool conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant wall temperature and to measure the instantaneous heat flow rate accurately with high temporal and spatial resolutions. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble geometry was obtained from the captured bubble images. The effect of the pool conditions on the bubble growth behavior was analyzed using dimensionless parameters for the initial and thermal growth regions. The effect of the pool conditions on the heat flow rate behavior was also examined. This study will provide good experimental data with precise constant wall temperature boundary condition for such works.

인공 캐비티를 가진 히터를 이용한 가열면 경사각에 따른 포화상태 풀 핵비등 열전달 기초연구 (Heat Transfer Characteristics under Saturated Nucleate Pool Boiling for Various Heating Surface Angles using Heater with Artificial Cavity)

  • 김정배
    • 한국태양에너지학회 논문집
    • /
    • 제29권4호
    • /
    • pp.7-14
    • /
    • 2009
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R11 and R113 for various surface angles under saturated pool condition. A circular heater of 1 mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of surface angles on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, sliding velocity, bubble shape and advancing and receding contact angles. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

유로단면이 변하는 수평관 내 기포류에서의 기포 및 액체 속도 (Bubble and Liquid Velocities for a Bubbly Flow in an Area-Varying Horizontal Channel)

  • 찬탄짬;김병재;박현식
    • 한국가시화정보학회지
    • /
    • 제15권3호
    • /
    • pp.20-26
    • /
    • 2017
  • The two-fluid equations are widely used to simulate two-phase flows in a nuclear reactor. For the two-fluid momentum equation, the wall and interfacial drag terms play an important role in predicting a two-phase flow behavior. Since the bubble density is much smaller than the water density, the bubble accelerates faster than the liquid in a nozzle. As a result, the bubble phase becomes faster than the liquid phase in the nozzle. In contrast, the opposite phenomena occur in the diffuser. The purpose of our study is to experimentally show these behaviors in an area-varying channel such as nozzle and diffuser. Experiments were made of turbulent bubbly flows in an area-varying horizontal channel. The velocities of the bubble and liquid phases were measured by the PIV technique. It was shown that the two-phase velocities were no longer close to each other in the area-varying regions. The bubble was faster than the liquid in the nozzle; in contrast, the bubble was slower than the liquid in the diffuser. Code simulations were also performed using the MARS code. By replacing the original wall drag model in the MARS code with Kim (1)'s wall drag partition model, we obtained the simulation results being consistent with experimental observations.

증발부에 편심 가열부를 사용한 버블젯 루프 히트파이프의 열성능 (Thermal Performance of the Bubble Jet Loop Heat Pipe Using Eccentric Heater in Evaporating Section)

  • 김종수;김성복
    • 설비공학논문집
    • /
    • 제27권12호
    • /
    • pp.652-658
    • /
    • 2015
  • The Bubble Jet Loop Heat Pipe (BJLHP) is designed to operate in the horizontal orientation. The motion of the bubble generated by boiling working fluid on a heater surface in the evaporating section of the BJLHP helps the working fluid transfer heat to the condensing portion. In this study, we changed the position of the heater in the evaporating section from concentric to eccentric. The concentric heater is located at the center of the tube in the evaporating part, and the eccentric heater is located at the bottom of the inner surface of the same tube. We used R-134a as the working fluid, and the charging ratio was 50%vol. We measured the temperatures of the evaporating and condensing sections by changing the input electric power from 50 W to 200 W, measuring every 50 W. The results of the experiment show that the effective thermal conductivity of BJLHP using an eccentric heater is four times higher than the BJLHP obtained using a concentric heater. Additionally, we conducted a visualization experiment on the evaporating portion of BJLHP to determine why the effective thermal conductivity was higher. The working fluid was water, and we took pictures of the flow visualization for BJLHP. Nucleate boiling with the eccentric heater was more intense and generated more bubbles. Therefore, the eccentric heater was more saturated by the liquefied working fluid.

액체질소 중 열기포 형상 및 절연 특성 (Shape and Dielectric Strength of Thermal Bubbles in Liquid Nitrogen)

  • 백승명;김해종
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.326-331
    • /
    • 2015
  • In this paper, we study the insulating properties of the liquid nitrogen(LN2) including the thermal bubbles. The shape of the thermal bubbles in accordance with the current change was observed in the 77 K and 65 K LN2. According to the temperature of liquid nitrogen, bubbles were generated differently. The round shape of the bubble is occurred in 77 K LN2. But the layer shape of bubble is occurred in 65 K LN2. When the bubbles present, the dielectric strength of liquid nitrogen is low. However, the breakdown patterns were different according to the electrode arrangement. AC breakdown voltage(BDV) was lower than the DC BDV due to the influence of bubbles. Therefore, the design of a high-voltage superconducting equipments should consider the bubbles.

이중버블시트를 이용한 동상방지공법의 동절기 성토공사 Mock-up 실험 (Mock-Up Test On Anti-Freezing Method with Double bubble Sheets Subject to Cold weather Banking)

  • 홍석민;손호정;오치현;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.33-34
    • /
    • 2011
  • In this study, using the double bubble sheet to anti-freezing method in winter the soil embanking Mock up as a part of the development process was carried out. As results, two layers of the double bubble sheet effect 12.6℃~13.8℃ temperature difference of out door temperature that proved superior insulation and thermal performance of the double bubble sheet.

  • PDF