• Title/Summary/Keyword: Thermal Boundary Conditions

Search Result 547, Processing Time 0.021 seconds

Cesium Release Behavior during the Thermal Treatment of High Bum-up Spent PWR Fuel (고연소도 경수로 사용후핵연료의 열처리에 따른 세슘 방출거동)

  • Park, Geun-Il;Cho, Kwang-Hun;Lee, Jung-Won;Park, Jang-Jin;Yang, Myung-Seung;Song, Kee-Chan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • The dynamic release behavior of Cs from high burn-up spent PWR fuel was experimentally performed under the conditions of a thermal treatment process such as voloxidation and sintering conditions. In voloxidation process, influence of the oxidation and reduction atmosphere on the Cs release characteristic using fragment type of spent fuel heated up to $1,500^{\circ}C$ was compared. In sintering process, temperature history effect on Cs release behavior was evaluated using green pellet under 4% $H_2/Ar$ environment. Temperature range for complete Cs release from spent fuel fragment under voloxidation condition was about $800^{\circ}C{\sim}1,200^{\circ}C$, but that of green pellet under the reduction atmosphere was $1,100^{\circ}C{\sim}1,400^{\circ}C$. Key parameters on Cs release behavior from spent fuel was powder formation as well as the diffusion rate of Cs compound to grain boundary and fuel surface.

  • PDF

Effects of stabilizing temperature gradients on thermal convection in rectangular enclosures during phsysical vapor trnasport (승화법에 의한 단결정성장공정에서 이중온도구배가 대류현상에 미치는 영향)

  • 김극태;최장우;이민옥;권무현;권순길
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.94-100
    • /
    • 1999
  • Mercurous chloride($Hg_2Cl_2$) crystals hold promise for many acousto-optic and opto-electronic applications, which are prepared in closed ampoules by the physical vapor transport(PVT) growth methods. The thermal boundary conditions established by imposing different temperature on sidewalls of the enclosure cause simultaneous horizontal and vertical convectie flow in the PVT processes of$Hg_2Cl_2$ . It is found that for the ratios of horizontal to vertical thermal Rayleigh numbers$Ra_H/Ra{\ge}1.5$, the convective flow structure changes from multicellular to unicellular for the base parametric state of Ra=($2.79{\times}10^4$) , Pr=0.91, Le=1.01, Pe=4.60, Ar=0.2 and$C_V =1.01$. For the $\Delta T^{*}_H$ greater than 0.3, the $$\mid$U$\mid$_{max}$is increased with increasing $\Delta$ T^{*}_H$ and decreasing the aspect ratio. For the aspect ratios ranging from 0.1 to 1.0, there is a direct and linear relationship between $$\mid$U$\mid$_{max}$ and $\sqrt{{\Delta}T^_H\;^{\ast}}$.A decrease in the aspect ratio destabilizes the convective flow and results in an increase of the magnitude of convection in the crystal growth reactor. The vertical gradient tends to destabilize the convective flow which leads to oscillations, whereas the horizontal gradient stabilizes the convection.

  • PDF

The Verification of a Numerical Simulation of Urban area Flow and Thermal Environment Using Computational Fluid Dynamics Model (전산 유체 역학 모델을 이용한 도시지역 흐름 및 열 환경 수치모의 검증)

  • Kim, Do-Hyoung;Kim, Geun-Hoi;Byon, Jae-Young;Kim, Baek-Jo;Kim, Jae-Jin
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.522-534
    • /
    • 2017
  • The purpose of this study is to verify urban flow and thermal environment by using the simulated Computational Fluid Dynamics (CFD) model in the area of Gangnam Seonjeongneung, and then to compare the CFD model simulation results with that of Seonjeongneung-monitoring networks observation data. The CFD model is developed through the collaborative research project between National Institute of Meteorological Sciences and Seoul National University (CFD_NIMR_SNU). The CFD_NIMR_SNU model is simulated using Korea Meteorological Administration (KMA) Local Data Assimilation Prediction System (LDAPS) wind and potential temperature as initial and boundary conditions from August 4-6, 2015, and that is improved to consider vegetation effect and surface temperature. It is noticed that the Root Mean Square Error (RMSE) of wind speed decreases from 1.06 to $0.62m\;s^{-1}$ by vegetation effect over the Seonjeongneung area. Although the wind speed is overestimated, RMSE of wind speed decreased in the CFD_NIMR_SNU than LDAPS. The temperature forecast tends to underestimate in the LDAPS, while it is improved by CFD_NIMR_SNU. This study shows that the CFD model can provide detailed and accurate thermal and urban area flow information over the complex urban region. It will contribute to analyze urban environment and planning.

A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions (고압터빈 노즐에서 입구온도분포와 장착조건에 따른 저주기 피로 수명 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho;Seo, Do Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1145-1151
    • /
    • 2015
  • High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part II: Under-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part II: 환기부족화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.80-88
    • /
    • 2013
  • The validation of Fire Dynamics Simulator (FDS) was conducted for the under-ventilated fire in well-confined multi-compartments representative of nuclear power plant. Numerical results were compared with experimental data obtained by the OECD/NEA PRISME project. The effects of the numerical boundary conditions (B.C.) in ventilated system and the flame suppression model applied within FDS on the thermal and chemical environments inside the compartment were discussed in details. It was found that numerical B.C. on the vent flow resulting from over-pressure at ignition and under-pressure at extinction should be considered carefully in order to predict accurately the species concentrations rather than temperatures and heat fluxes inside the multi-compartment. The default information of suppression model applied within FDS resulted in artificial phenomena such as flame extinction and re-ignition, and thus the FDS results on the under-ventilated fire showed good agreement with the experimental results as the modified suppression criteria of the fuel used was adopted.

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part I: Over-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part I: 과환기화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.31-39
    • /
    • 2013
  • The Fire Dynamics Simulator (FDS) has been applied to simulate a full-scale pool fire in well-confined and mechanically ventilated multi-compartments representative of nuclear power plant. The predictive performance of FDS was evaluated through a comparison of the numerical data with experimental data obtained by the OECD/NEA PRISME project. To identify clearly the FDS results regarding to the user-dependence in the process of FDS implementation except for the intrinsic limitation of FDS such as simple combustion model, only the over-ventilated fire condition was chosen. In particular, the importance of accurate boundary conditions (B.C.) in mechanically ventilated system were discussed in details. It was known from FDS results that the B.C. on inlet and outlet vents did significantly affect the thermal and chemical characteristics inside the compartments. Finally, it was confirmed that the FDS imposed an accurate ventilation B.C. provided qualitatively good agreement with temperatures, heat fluxes and concentrations measured inside the nuclear-type multi-compartments.

THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network

  • Kwon, Sangki;Lee, Changsoo
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • The evaluation of Thermo-Hydro-Mechanical (THM) coupling behavior is important for the development of underground space for various purposes. For a high-level radioactive waste repository excavated in a deep underground rock mass, the accurate prediction of the complex THM behavior is essential for the long-term safety and stability assessment. In order to develop reliable THM analysis techniques effectively, an international cooperation project, Development of Coupled models and their Validation against Experiments (DECOVALEX), was carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment that was conducted at Horonobe Underground Research Laboratory(URL) by Japan Atomic Energy Agency (JAEA), was modeled by the research teams from the participating countries. In this study, a THM coupling technique that combined TOUGH2 and FLAC3D was developed and applied to the THM analysis for the in situ experiment, in which rock, buffer, backfill, sand, and heater were installed. With the assistance of an artificial neural network, the boundary conditions for the experiment could be adequately implemented in the modeling. The thermal, hydraulic, and mechanical results from the modeling were compared with the measurements from the in situ THM experiment. The predicted buffer temperature from the THM modelling was about $10^{\circ}C$ higher than measurement near by the overpack. At the other locations far from the overpack, modelling predicted slightly lower temperature than measurement. Even though the magnitude of pressure from the modeling was different from the measurements, the general trends of the variation with time were found to be similar.

Scramjet Research at JAXA, Japan

  • Chinzei Nobuo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.1-1
    • /
    • 2005
  • Japan Aerospace Exploration Agency(JAXA) has been conducting research and development of the Scramjet engines and their derivative combined cycle engines as hypersonic propulsion system for space access. Its history will be introduced first, and its recent advances, focusing on the engine performance progress, will follow. Finally, future plans for a flight test of scramjet and ground test of combined cycle engine will be introduced. Two types of test facilities for testing those hypersonic engines. namely, the 'Ramjet Engine Test Facility (RJTF)' and the 'High Enthalpy Shock Tunnel (HIEST)' were designed and fabricated during 1988 through 1996. These facilities can test engines under simulated flight Mach numbers up to 8 for the former, whereas beyond 8 for the latter, respectively. Several types of hydrogen-fueled scramjet engines have been designed, fabricated and tested under flight conditions of Mach 4, 6 and 8 in the RJTF since 1996. Initial test results showed that the thrust was insufficient because of occurrence of flow separation caused by combustion in the engines. These difficulty was later eliminated by boundary-layer bleeding and staged fuel injection. Their results were compared with theory to quantify achieved engine performances. The performances with regards to combustion, net thrust are discussed. We have reached the stage where positive net thrust can be attained for all the test coditions. Results of these engine tests will be discussed. We are also intensively attempting the improvement of thrust performance at high speed condition of Mach 8 to 15 in High Enthalpy Shock Tunnel (HIEST). Critical issues for this purposemay be air/fuel mixing enhancement, and temperature control of combustion gas to avoid thermal dissociation. To overcome these issues we developed the Hypermixier engine which applies stream-wise vortices for mixing enhancement, and the M12-engines which optimizes combustor entrance temperature. Moreover, we are going to conduct the flight experiment of the Hypermixer engine by utilizing flight test infrastructure (HyShot) provided by the University of Queensland in fall of 2005 for comparison with the HIEST result. The plan of the flight experiment is also presented.

  • PDF

Numerical Simulation on the Behavior of Air Bubble Discharging into a Water Pool through a Sparger without Load Reduction Ring (하중저감 링이 없는 증기분사기를 통해 수조로 방출되는 기포 거동에 대한 수치해석)

  • 김환열;배윤영;송진호;김희동
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.259-266
    • /
    • 2003
  • Load reduction ring (LRR) was installed on the ABB-Atom sparger to reduce the oscillatory loadings due to the air bubble clouds in the water pool in case of safety relief system operations. In order to investigate the effect of LRR on the pressure field, a numerical simulation on the behavior of air bubble clouds discharging into a water pool through a ABB-Atom sparser without LRR was performed by using a commercial thermal hydraulic analysis code, FLUENT 4.5. Among the multi-phase models contained in the code, the VOF (Volume Of Fluid) model was used to simulate the interface of water, air and steam flows. By comparing the analysis results with the previous ones, the load reduction ring has an effect on reducing the oscillatory loads at the wall. It also includes the effect of air mass and inlet boundary conditions of the pipe on the pressure oscillations at the wall.