• Title/Summary/Keyword: Thermal Barrier Coatings

Search Result 116, Processing Time 0.032 seconds

Corrosion Behavior of Ytterbium Silicates in Water Vapor Atmosphere at High Temperature for Environmental Barrier Coating Applications (환경차폐코팅용 이터븀 실리케이트의 고온 수증기부식 거동)

  • Min-Ji Kim;Jae-Hyeong Choi;Seongwon Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.443-450
    • /
    • 2023
  • SiC/SiCf CMC is vulnerable to water vapor corrosion at a high temperature of 1500℃. So, EBC (Environmental Barrier Coating) materials are required to protect Si-based CMCs. Ytterbium silicates are reported to have coefficient of thermal expansion (CTE) similar to that of the base material, such as SiC/SiCf CMC. When the EBC are materials exposed to high temperature environment, the interface between ytterbium silicates and SiC/SiCf CMC is not separated, and the coating purpose can be safely achieved. For the perspective of EBC applications, thermally grown oxide (TGO) layer with different CTE is formed by the reaction with water vapor in EBC, which leads to a decrease in life time. In this study, we prepare two types of ytterbium silicates to observe the corrosion behavior during the expose to high temperature and water vapor. In order to observe this behavior, the steam-jet furnace is prepared. In addition, phase formation of these ytterbium silicates is analyzed with microstructures by the before/after steam-jet evaluation at 1500℃ for 100 h.

Thermal Shock Resistance According to the Manufacturing Process of Lanthanum Gadolinium Zirconate Ceramic Igot for Thermal Barrier Coating by Electron Beam in the La2O3-Gd2O3-ZrO2 System (전자빔 증착 열차폐 코팅용 란타늄-가돌리늄 지르코네이트(La2O3-Gd2O3-ZrO2계) 세라믹 잉곳의 제조공정에 따른 열충격 저항성)

  • Choi, Seona;Chae, Jungmin;Kim, Seongwon;Lee, Sungmin;Han, Yoonsoo;Kim, Hyungtae;Jang, Byungkoog;Oh, Yoonsuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.465-472
    • /
    • 2017
  • The ingot fabrication conditions related with the thermal shock bearing phase and microstructure have investigated for the rare earth zirconate ceramic material, lanthanum gadolinium zirconate, as a thermal barrier coating using electron beam evaporation method. The thermal shock resistance of the prepared ingot was evaluated by high energy electron beam irradiation. The rare earth zirconate ceramic powder was prepared by controlling the raw material powder composition of $La_2O_3$, $Gd_2O_3$ and $ZrO_2$ so as to have a composition of $(La_{0.3}Gd_{0.7})_2Zr_2O_7$ which was selected from the former study. Ingot samples were prepared under two conditions. The first condition is prepared by sintering the prepared powder mixture to form an ingot. The second condition is prepared by calcining the prepared powder mixture to form a composite phase and then sintering to form an ingot. X-ray diffraction(XRD) and Scanning Electron Microscope(SEM) were used to analyze phase forming behavior and microstructure of ingot samples. Nanoindentation method used to obtain elastic modulus and hardness of each ingot specimen. Also the stress distribution of ingot was simulated by using FEM method assuming the ingot surface was exposed to electron beam. As a results, in the case of an ingot having a network-shaped microstructure in which relatively coarse pores are included, it seems that the thermal shock resistance was higher than in the case of an ingot having a microstructure composed of relatively fine grains only or particles with the similar level size when the high energy electron beam irradiation.

Characteristics of tungsten coated graphite using vacuum plasma spraying method

  • Lim, Hyeonmi;Kang, Boram;Kim, Hoseok;Hong, Bong Guen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.200.1-200.1
    • /
    • 2016
  • Tungsten coatings on the graphite (CX-2320) were successfully deposited using the vacuum plasma spraying (VPS) method. An optimum coating procedure was developed and coating thicknesses of $409{\mu}m$ (without an interlayer) and $378{\mu}m$ (with an interlayer) were obtained with no cracks and no signs of delamination. The mechanical characteristics and microstructure of the tungsten coating layers were investigated using a Vickers hardness tester, FE-SEM, EDS, and XRD. The effect of a titanium interlayer on the properties of the tungsten coating was investigated. It was shown that the titanium interlayer prevented the diffusion of carbon to the tungsten layer, thereby suppressing the formation of tungsten carbide. Vickers hardness data yielded values that were 62.5 ~ 80.46% of those for bulk tungsten, indicating that tungsten coatings on graphite can be utilized as a plasma-facing material. High heat flux tests were performed by using thermal plasma with a maximum flux of $10MW/^2$. Vickers hardness after the heat flux test is performed to see a change in the mechanical properties. The formationof a tungsten carbide and the effect of the titanium interlayer for the diffusion barrier are investigated by using energy dispersion spectroscopy (EDS).

  • PDF

Interaction study of molten uranium with multilayer SiC/Y2O3 and Mo/Y2O3 coated graphite

  • S.K. Sharma;M.T. Saify;Sanjib Majumdar;Palash K. Mollick
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1855-1862
    • /
    • 2023
  • Graphite crucibles are used for melting uranium and its alloys in VIM furnace. Various coating materials namely Al2O3, ZrO2, MgO etc. are applied on the inner surface of the crucibles using paint brush or thermal spray technique to mitigate U-C interaction. These leads to significant amount of carbon pick-up in uranium. In this study, the attempts are made to develop multilayer coatings comprising of SiC/Y2O3 and Mo/Y2O3 on graphite to study the feasibility of minimizing U-C interaction. The parameters are optimized to prepare SiC coating of about 70㎛ thickness using CVD technique on graphite coupons and subsequently Y2O3 coating of about 250㎛ thickness using plasma spray technique. Molybdenum and Y2O3 layers were deposited using plasma spray technique with 70㎛ and 250㎛ thickness, respectively. Interaction studies of the coated graphite with molten uranium at 1450℃ for 20 min revealed that Y2O3 coating with SiC interlayer provides physical barrier for uranium-graphite interaction, however, this led to the physical separation of coating layer. Y2O3 coating with Mo interlayer provided superior barrier effect showing no degradation and the coatings remained intact after interaction tests. Therefore, the Mo/Y2O3 coating was found to be a promising solution for minimizing carbon pick-up during uranium/uranium alloy melting.

Formation of Phases and Mechanical Properties of YSZ-Based Thermal Barrier Coating Materials Doped with Rare Earth Oxides (희토류 산화물이 첨가된 YSZ 기반의 열차폐 코팅용 소재의 상 형성 및 기계적 특성)

  • Yong Seok Choi;Gye Won Lee;Sahn Nahm;Yoon suk Oh
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.402-408
    • /
    • 2023
  • This study focused on improving the phase stability and mechanical properties of yttria-stabilized zirconia (YSZ), commonly utilized in gas turbine engine thermal barrier coatings, by incorporating Gd2O3, Er2O3, and TiO2. The addition of 3-valent rare earth elements to YSZ can reduce thermal conductivity and enhance phase stability while adding the 4-valent element TiO2 can improve phase stability and mechanical properties. Sintered specimens were prepared with hot-press equipment. Phase analysis was conducted with X-ray diffraction (XRD), and mechanical properties were assessed with Vickers hardness equipment. The research results revealed that, except for Z10YGE10T, most compositions predominantly exhibited the t-phase. Increasing the content of 3-valent rare earth oxides resulted in a decrease in the monoclinic phase and an increase in the tetragonal phase. In addition, the t(400) angle decreased while the t(004) angle increased. The addition of 10 mol% of 3-valent rare-earth oxides discarded the t-phase and led to the complete development of the c-phase. Adding 10 mol% TiO2 increased hardness than YSZ.

Influence of post-annealing temperature on double layer ZTO/GZO deposited by magnetron co-sputtering

  • Oh, Sung Hoon;Cho, Sang Hyun;Jung, Jae Heon;Kang, Sae Won;Cheong, Woo Seok;Lee, Gun Hwan;Song, Pung Keun
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.140-144
    • /
    • 2012
  • Ga-doped ZnO (GZO) was a limit of application on the photovoltaic devices such as CIGS, CdTe and DSSC requiring high process temperature, because it's electrical resistivity is unstable above 300 ℃ at atmosphere. Therefore, ZTO (zinc tin oxide) was introduced in order to improve permeability and thermal stability of GZO film. The resistivity of GZO (300 nm) single layer increased remarkably from 1.8 × 10-3Ωcm to 5.5 × 10-1Ωcm, when GZO was post-annealed at 400 ℃ in air atmosphere. In the case of the ZTO (150 nm)/GZO (150 nm) double layer, resistivity showed relatively small change from 3.1 × 10-3Ωcm (RT) to 1.2 × 10-2Ωcm (400 ℃), which showed good agreement with change of carrier density. This result means that ZTO upper layer act as a barrier for oxygen at high temperature. Also ZTO (150 nm)/GZO (150 nm) double layer showed lower WVTR compared to GZO (300 nm) single layer. Because ZTO has lower WVTR compared to GZO, ZTO thin film acts as a barrier by preventing oxygen and water molecules to penetrate on top of GZO thin film.

Nanotechnology in elastomers- Myth or reality

  • Shanmugharaj, A.M.;Ryu, Sung-Hun
    • Rubber Technology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Nanotechnology is the fast becoming key technology of the $21^{st}$ century. Due to its fascinating size-dependent properties, it has gained significant important in various sectors. Myths are being formed on the proverbal nanotechnology market, but the reality is the nanotechnology is not a market but a value chain. The chain comprises of - nanomaterials (nanoparticles) and nanointermediates (coatings, compounds, smart fabrics). Elastomer based nanocomposites reinforced with low volume fraction of nanofillers is the first generation nanotechnology products and it has attracted great interest due to their fascinating properties. The incorporation of nanofillers such as nanolayered silicates, carbon nanotubes, nanofibers, metal oxides or silica nanoparticles into elastomers improves significantly their mechanical, thermal, barrier properties, flame retardency etc., Extremely small particle size, high aspect ratio and large interface area yield an excellent improvement of the properties in a wide variety of the materials. Uniform dispersion of the nanofillers is a general prerequisite for achieving desired properties. In this paper, current developments in the area of elastomer based nanocomposites reinforced with layered silicate and carbon nanotube fillers are highlighted.

  • PDF

The Effect of the Phase Transformations on the Durability of the Plasma Sprayed Thermal Barrier Coatings (플라즈마 용사에 의한 열벽코팅의 상변태가 내구성에 미치는 영향)

  • Lee, E.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.3
    • /
    • pp.176-185
    • /
    • 1996
  • 플라즈마 용사된 열벽코팅의 수명을 평가하기 위하여 여러가지 양의 CeO$_2$(16,18,20,22,24 그리고 26 wt.% CeO$_2$)를 포함하는 지르코니아 코팅에 대한 상분석이 행하여 졌다. 플라즈마 용사된 후 16 및 18 wt.% CeO$_2$를 포함하는 지르코니아 코팅에서는 비평형 tetragonal 상 만이 생성되었으나 20-26 wt.% CeO$_2$를 포함하는 지르코니아 코팅에서는 비평형 tetragonal 및 cubic 상의 혼합상이 관찰되었다. 열순환 산화시험 동안에는 비평형 tetragonal 및 cubic 상은 평형 tetragonal 및 cubic 상으로 변태하였다. 평형 tetragonal 상의 일부는 열순환 산화시험의 냉각과정 중에 monoclinic 상으로 변태하였다. 그리고 16 wt.% CeO$_2$를 포함하는 지르코니아 코팅은 다른 조성의 지르코니아 코팅보다 열순환 산화시험 동안 더 많은 monoclinic 상이 생성되었으며 세라믹 코팅 수명이 짧았다.

  • PDF

전기접점 재료상에 입힌 경질금고금층의 특성연구 Properties of a Hard Gold plating Layer on Electrical Contace Materials

  • 최송천;장현구
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.3
    • /
    • pp.173-182
    • /
    • 1990
  • In order to prevent the thermal and enviromenatal degradation of contact materials a nickel layer was plated as an undercoat of gold plating on the surface phosphorous bronze. The thickness of nikel and gold coating and chemical resistance of the coatings were measured at various conditions. Variation of morphology and chemical composition was studied by SEM, EDS and ESCA, respectively. Nickel layer was found to act as a thermal diffusion barrier and to retard the diffusion of copper from substrate to gold coating in the temperature $200^{\circ}C$~$400^{\circ}C$. below $200^{\circ}C$gold coated contacts showed a stable and low contanct resistance, while above $200^{\circ}C$ rapid diffusion of copper formed copper oxide on the surface layer and raised the contact resistance. With the nickel thinkness of abount 5$\mu$m as an undercoat the gold thinkness of $0.5\mu$m, showed satistactory (less than 1 m$\Omega$) contact resistance below 20$0^{\circ}C$ and corresponding gold thinkness increased to 1.0 m at $300^{\circ}C$~$400^{\circ}C$.

  • PDF

Thermal Insulation Property of UV Cure Coatings Using Hollow Micro-Spheres (마이크로 중공구를 이용한 자외선 경화 코팅 박막의 단열 특성)

  • Kim, Nam Yi;Chang, Young-Wook;Kim, Seong Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.621-626
    • /
    • 2012
  • In this study, the composite coating materials with improved thermal insulation property were prepared by incorporating the hollow micro-spheres with high heat transfer resistance. The UV curable resin system consisting of hexa aliphatic urethane acrylate (UP118), trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), and photoinitiator (Irgacure184) was employed as an organic binder. The glass substrates were coated by the prepared composites via bar coating method and cured under UV radiation. The optical transparency, thermal insulation property, adhesion, and surface hardness of the glass coated with composites containing different type of micro-spheres were investigated. The incorporation of micro-spheres with only 20 vol% of content resulted in remarkable improvement in the thermal insulation property of the coated glass. In addition, the transparent coated glass with light transmittance of about 80% could be obtained when silica micro-sphere (SP) was used as a thermal barrier.