Proceedings of the Korean Institute of Surface Engineering Conference
/
2018.06a
/
pp.53-53
/
2018
Thermoelectric materials can convert directly waste heat to electricity and vice versa. The improvement of the thermoelectric efficiency strongly depends on the dimensionless figure of merit, $ZT=S^2{\sigma}T/{\kappa}$, where S is the Seebeck coefficient, ${\sigma}$ is the electrical conductivity, T is the absolute temperature, and ${\kappa}$ is the thermal conductivity. The thermal conductivity consists of the electronic contribution (${\kappa}_e$) and phonon contribution (${\kappa}_{ph}$). It is very challenge to increase the power factor, $S^2{\sigma}$ and to reduce the thermal conductivity simultaneously because the power factor and electronic thermal conductivity are coupled. One strategy is to decrease the phonon thermal conductivity. The phonon thermal conductivity can be decreased by controlling the grain size and structural defects such as dislocations and twinning. In order to achieve enhancements in thermoelectric efficiency, microstructures that can form numerous interfaces have been investigated intensively for controlling the transport of charge carriers and heat carrying phonons. In this presentation, we report the heterogeneous microstructure of $Mg_2Si_{0.6}Sn_{0.4}$ thermoelectric materials and investigation of its influence on thermoelectric properties.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.13
no.8
/
pp.711-717
/
2000
Effect of alloying element additions to Ag on thermal conductivity electrical conductivity and mechanical properties of sheath materials for BSCCO tapes has been characterized. The thermal conductivity at low temperature range(10~300K) of Ag alloys were evaluated by both direct and indirect measurement techniques and compared with each other. It was observed that thermal conductivity decreased with increasing the content of alloying elements such as Au, Pd and Mg. Thermal conductivity of pure Ag at 30 K was measured to be 994.0 W/m.K on the other hand the corresponding values of A $g_{0.9995}$/M $g_{0.0005}$, A $g_{0.974}$/A $u_{0.025}$/M $g_{0.001}$, A $g_{0.973}$/Au.0.025//M $g_{0.002}$, and A $g_{0.92}$/P $d_{0.06}$/M $g_{0.02}$ were 342.6, 62.1, 59.2, 28.9 W/m.K respectively indicating 3 to 30 times lower than that of pure Ag. In addition alloying element additions to Ag improved mechanical strength while reduced elongation probably due to the strengthening mechanisms by the presence of additive atoms.s.
Journal of the Korea Institute of Building Construction
/
v.4
no.3
/
pp.93-100
/
2004
In recent years, it has widely been studied on the light-weight composites for the purpose of the large space and thermal insulation of building structures. The purpose of this study is to evaluate the properties of light-weight composites made by binders as cement, resin and polymer cement slurry. The concrete composites are prepared with various conditions such as polymer-cement ratio, void-filling ratio, type of resin, filler content and light-weight aggregate content, tested for thermal conductivity. From the test results, the thermal conductivity of concrete composites with the binder of cement tends to decrease with increasing polymer-cement ratio, and to increase with increasing void-filling ratio. The thermal conductivity of concrete composites with the binder of resin are markedly affected by the light-weight aggregate content, type of resin and filler content. The composites made by polymer-modified concrete and polymer cement slurry have a good thermal insulation property. From the this study, we can recommend the proper mix proportions for thermal insulation Panel or concrete. Expecially. the thermal conductivity of concrete composites made by polyurethane resin is almost the same as that of the conventional expanded polystyrene resin.
PURPOSES : The purpose of this study is to develop a deicing pavement system using carbon fiber or graphite with high electrical conductivity and thermal conductivity. METHODS: Based on literature reviews, in general, conventional concrete does not exhibit electrical and thermal conductivity. In order to achieve a new physical property, experiments were conducted by adding graphite and carbon fiber to a mortar specimen. RESULTS: The result of the laboratory experiment indicates that the addition of graphite can significantly reduce the compressive strength and improve the thermal conductivity of concrete. In the case of carbon fiber, however, the compressive strength of the concrete is slightly increased, whereas, the thermal conductivity is slightly decreased against the plain mortar irrespective of the length of the carbon fiber. In addition, a mixture of the graphite and carbon fiber can greatly improve the degree of heating test. CONCLUSIONS : Various properties of cement mortar change with the use of carbon fiber or graphite. To enhance the conductivity of concrete for deicing during winter, both carbon fiber and graphite are required to be used simultaneously.
Proceedings of the Korea Concrete Institute Conference
/
1998.10b
/
pp.946-951
/
1998
In order to calculate the thermal stresses of massive concrete structures in non-steady state conditions the thermal properties of the materials have to be well known. Structural materials such as concrete, rock and soil are heterogeneous, damp and porous so that measurements of their thermal properties by conventional methods would result in large errors. In this study, thermal conductivity was measured by the device, QTM-D3 which is usually used in Japan. Variables are chosen as age, water content, temperature, aggregate content, S/A ratio and type of cementitious materials. Finally a model for thermal conductivity was proposed.
The relative contributions of phonon and electron to the thermal conductivity of silicon film with varying doping density are evaluated from the modified electron-phonon interaction model, which is applicable to the micro/nanoscale simulation of energy transport between energy carriers. The thermal conductivities of intrinsic silicon layer thicknesses from 20 nm to 500 nm are calculated and extended to the variation in n-type doping densities from 1.0 ${\times}$$10^{18}$ to 5.0 ${\times}$$10^{20}$$cm^{-3}$, which agree well with the experimental data and theoretical model. From simulation results, the phonon and electron contributions to thermal conductivity are extracted. The electron contribution in the silicon is found to be not negligible above $10^{19}$$cm^{-3}$, which can be classified as semimetal or metal by the value of its electrical resistivity at room temperature. The thermal conductivity due to electron is about 57.2% of the total thermal conductivity at doping concentration 5.0 ${\times}$$10^{20}$$cm^{-3}$ and silicon film thickness 100 nm.
The Transactions of the Korean Institute of Electrical Engineers C
/
v.54
no.11
/
pp.477-482
/
2005
We have investigated volume resistivity and thermal properties showed by changing the content of carbon black which is the component parts of semiconducting shield in underground power transmission cable. Specimens were made of sheet form with the nine of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the preheated oven of both 25$\pm$1[$^{\circ}C$] and 90$\pm$1[$^{\circ}C$]. And specific heat (Cp) and thermal conductivity were measured by Nano Flash Diffusivity and DSC (Differential Scanning Calorimetry). The measurement temperature ranges of specific heat using the BSC was from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity using Nano Flash Diffusivity were both 25[$^{\circ}C$] and 55[$^{\circ}C$]. Volume resistivity was high according to an increment of the content of carbon black from these experimental results. And specific heat was decreased, while thermal conductivity was increased by an increment of the content of carbon black. And both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.
Transactions of the Korean Society of Mechanical Engineers A
/
v.26
no.3
/
pp.553-559
/
2002
Carbon-fiber which has very small radial dimension makes us difficult to measure it's properties. So in this paper, we suggest a simple method to measure the thermal conductivity of a carbon-fiber's and carbon-fiber-reinforced-plastics(CFRP) laminates. The thermal conductivity of CFRP laminates was measured experimentally at the same time analytically. The experimental model is based on the one-dimensional analysis of fin sample because CFRP laminates has a thin geometric configuration. The analytical model to measure the thermal conductivity of carbon-fiber is expressed by use of mean-field model which is based on Eshelby's elliptical inclusion problem. Therefore the thermal conductivity of angle-ply laminates can be computed by use of effective longitudinal and transverse thermal conductivities of unidirectional composite of the constituents.
Aluminum nitride (AlN), as a substrate material in electronic packaging, has attracted considerable attention over the last few decades because of its excellent properties, which include high thermal conductivity, a coefficient of thermal expansion that matches well with that of silicon, and a moderately low dielectric constant. AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition (PLD). The epitaxial AlN films were grown on sapphire (c-Al2O3) single crystals by PLD with AlN target and Y2O3 doped AlN target. A comparison of different targets associated with AlN films deposited by PLD was presented with particular emphasis on thermal conductivity properties. The quality of AlN films was found to strongly depend on the growth temperature that was exerted during deposition. AlN thin films deposited using Y2O3-AlN targets doped with sintering additives showed relatively higher thermal conductivity than while using pure AlN targets. AlN thin films deposited at 600℃ were confirmed to have highly c-axis orientation and thermal conductivity of 39.413 W/mK.
Byung-Ho Lee;Yang-Hyun Koo;Jin-Silk Cheon;Je-Yong Oh;Hyung-Koo Joo;Dong-Seong Sohn
Nuclear Engineering and Technology
/
v.34
no.5
/
pp.482-493
/
2002
The MOX fuel for LWR is fabricated either by direct mechanical blending of UO$_2$ and PuO$_2$ or by two stage mixing. Hence Pu-rich particles, whose Pu concentrations are higher than pellet average one and whose size distribution depends on a specific fabrication method, are inevitably dispersed in MOX pellet. Due to the inhomogeneous microstructure of MOX fuel, the thermal conductivity of LWR MOX fuel scatters from 80 to 100 % of UO$_2$ fuel. This paper describes a mechanistic thermal conductivity model for MOX fuel by considering this inhomogeneous microstructure and presents an explanation for the wide scattering of measured MOX fuel's thermal conductivity. The developed model has been incorporated into a KAERI's fuel performance code, COSMOS, and then evaluated using the measured in-pile data for MOX fuel. The database used for verification consists of homogeneous MOX fuel at beginning-of-life and inhomogeneous MOX fuel at high turnup. The COSMOS code predicts the thermal behavior of MOX fuel well except for the irradiation test accompanying substantial fission gas release. The over-prediction with substantial fission gas release seems to suggest the need for the introduction of a recovery factor to a term that considers the burnup effect on thermal conductivity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.