• Title/Summary/Keyword: Therapy oriented CT

Search Result 4, Processing Time 0.016 seconds

The Effect of Therapy Oriented CT in Radiation Therapy Planning (치료 계획용 전산화 단층촬영이 방사선 치료계획에 미치는 효과)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.149-155
    • /
    • 1987
  • The success of radioation therapy depends on exact treatment of the tumor with significant high dose for maximizing local control and excluding the normal tissues for minimizing unwanted complications. To achieve these goals, correct estimation of target volume in three dimension, exact dose distribution in tumor and normal critical structures and correction of tissue inhomogeneity are required. The effect of therapy oriented CT (plannng CT) were compared with conventional simulation method in necessity of planning change, set dose, and proper distribution of tumor dose. Of 365 new patients examined, planning CT was performed in 104 patients $(28\%)$. Treatment planning was changed in $47\%$ of head and neck tumor, $79\%$ of intrathoracic tumor and $63\%$ of abdmonial tumor. in breast cancer and musculoskeletal tumors, planning CT was recommended for selection of adequate energy and calculation of exact dose to critical structures such as kidney or spinal cord. The average difference of tumor doses between CT planning and conventional simulation was $10\%$ in intrathoracic and intra-abdominal tumors but $20\%$ in head and neck tumors which suggested that tumor dose may be overestimated in conventional simulation Although some limitations and disadvantages including the cost and irradiation during CT are still criticizing, our study showed that CT Planning is very helpful in radiotherapy Planning.

  • PDF

Object-Oriented Stereotactic Radiosurgery Planning System (객체 지향 개념을 이용한 뇌정위 방사선 수술 계획 시스템)

  • Park, S.H.;Suh, T.S.;Suh, D.Y.;Kang, W.S.;Ha, S.H.;Kim, I.H.;Park, C.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.85-87
    • /
    • 1994
  • In this paper, we present an object-oriented stereotactic radiosurgery planning system, which accepts medical images such as CT and angiography, transforms the coordinates to a reference frame coordinate, calculates dose distributions, and finally displays isodose curves over the images. The user finds an adequate one for radiosurgeries after performing computer simulations on different treatment parameter sets. The object-oriented design concept was fully applied to the system composed of seven manager objects of different classes: a patient information manager, a user-interface manager, a coordinate transformation manager, a blackboard manager, a dose calculation manager, an isodose curve display manager, and a report manager. All the user interactions are carried out through the use of mouse buttons. The performance of the system was verified by four physicians and two medical physicists, and now is being used in two clinical sites.

  • PDF

Development of Computer-based 2-D Radiation Therapy Planning System (컴퓨터를 이용한 통합적 2차원 방사선치료계획장치 개발)

  • Suh, T.S.;Yoon, S.C.;Suh, D.Y.;Kim, M.C.;Lee, H.K.;Choe, B.Y.;Shinn, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.64-65
    • /
    • 1998
  • The aim of this work is to develop computerized 2-D radiation therapy planning system. The algorithms to compute dose for photon, electron, radioisotope have been developed, and dose distributions were superimposed on CT or MR images. Using object oriented modeling the structure of program has been designed for the efficient user-interface. Finally, a prototyp of 2-D radiation therapy planning system has been successfully applied in clinical cases for the demonstration.

  • PDF

Multimodality and Application Software (다중영상기기의 응용 소프트웨어)

  • Im, Ki-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.153-163
    • /
    • 2008
  • Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multi modality instrumentations for clinical use from conception to present-day technology and the application software.