• Title/Summary/Keyword: Therapy Beam

Search Result 733, Processing Time 0.025 seconds

Radiotherapy Technique of High Energy Electron (고에너지 전자선의 방사선 치료 기술)

  • SUH M.W.;PARK J.I.;CHOI H.S.;KIM W.Y.
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 1985
  • High energy electron beams took effect for tumor radio-therapy, however, had a lot of problems in clinical application because of various conversion factors and complication of physical reactions. Therefore, we had experimentally studied the important properties of high energy electron beams from the linear accelerator, LMR-13, installed in Yonsei Cancer Center. The results of experimental studies on the problems in the 8, 10, 12 Mev electron beam therapy were reported as following. 1. On the measurements of the outputs and absorbed does, the ionization type dosimeters that had calibrated by $^{90}Sr$ standard source were suitable as under $3\%$ errors for high energy electrons to measure, but measuring doses in small field sizes and the regions of rapid fall off dose with ionization chambers were difficult. 2. The electron energy were measured precisely with energy spectrometer consisted of magnet analyzer and tele-control detector and the practical electron energy was calculated under $5\%$ errors by maximum range of high energy electron beam in the water. 3. The correcting factors of perturbated dose distributions owing to radiation field, energy and material of the treatment cone were checked and described systematically and variation of dose distributions due to inhomogeneous tissues and sloping skin surfaces were completely compensated. 4. The electron beams, using the scatters; i.e., gold, tin, copper, lead, aluminium foils, were adequately diffused and minimizing the bremsstrahlung X-ray induced by the electron energy, irradiation field size and material of scatterers, respectively. 5. Inproving of the dose distribution from the methods of pendulum, slit, grid and focusing irradiations, the therapeutic capacity with limited electron energy could be extended.

  • PDF

KCCH Medical Cyclotron Operation for Neutron Therapy and Isotope Production (1989) - A Technical Report - (중성자 치료와 동위원소 생산을 위한 KCCH 의학용 싸이클로트론의 운영 (1989))

  • Kim, Byung-Mun;Kim, Young-Sear;Bak, Joo-Shik;Lee, Jong-Du;Yoo, Seong-Yul;Koh, Kyung-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 1990
  • After four years of planning, equipment acquisition, facility construction and beam testing, the KCCH cyclotron facility was put into operation in November1986. Now the KCCH cyclotron(MC-50) has been used for four years in neutron therapy and radioisotope production. Up to December 1989, 179(1852 sessions) patient have undergone neutron therapy. Radioisotope production for nuclear medicine use was started from March 1989 after extensive work to overcome target transport, target melting, beam diagnostic and chemical processing problems. This status report introduces the cyclotron facility, and the experiences of neutron therapy and isotope production with the MC-50 cyclotron. Besides, the operation results and the general troubles of the MC-50 during 1989 are summarized. Total operation time was 1252.5 hours. Four hundred hours were used for neutron therapy of 599 treatment sessions and 832.5 hours for radioisotope production. Total amount of produced raioisotope was 1695 mCi(Ga-67 : 1478mCi, Tl-201 : 107 mCi, I-123 : 25mCi, In-111 : 85mCi). Twenty hours were used for scheduled beam testing. In 1989, 882% of the planned operation were performed on schedule and this rats is improved remarkably compared to 71.0% in 1988.

  • PDF

A Trial of 6 MV Linear Accelerator Radiation Therapy (RT) for Breast Cancer (6 MV 선형가속기를 사용한 유방암 치료)

  • Lee Guy Won;Park Ju Seon;Kim Geol;Yoon Sei Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.1 no.1
    • /
    • pp.37-42
    • /
    • 1985
  • Radiation Therapy(RT) has been used in the treatment of breast cancer for over 80 years. Technically, it should include a part or all of such areas as chest wall or breast, axilla, internal mammary nodes(IM) and supraclavicular nodes (SCL). Authors tried three-field technique for the treatment of breast cancer using 6 MV linear accelerator, exclusively the department of Radiology, Kang-Nam St. Mary's Hospital, at Catholic Medical College. The field junction was checked by a phantom study and radiation doses measured by film densitometry and TLD. The 3 fields we used in this study were two isocentric opposing tangential fields encompassing the breast, chest wall and occasionally IM and one single anterior field encompassing the axilla and SCL. Using appropriate beam blocks and blouses, we were able to avoid unwanted intrinsic divergency of photon beam. Blocking also enabled us to set-up precise radiation field with ease.

  • PDF

Estimation of Nuclear Interaction for $^{11}C$ Cancer Therapy

  • Maruyama, Koichi;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Suda, Mitsuru;Mizuno, Hideyuki;Iseki, Yasushi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.199-201
    • /
    • 2002
  • Cancer therapy using high-energy $^{12}$ C ions is successfully under way at HIMAC, Japan. An alternative beam to $^{12}$ C is $^{11}$ C ions. The merit of $^{11}$ C over $^{12}$ C is its capability for monitoring spatial distribution of the irradiated $^{11}$ C by observing the $\beta$$^{+}$ decay with a good position resolution. One of the several problems to be solved before its use for therapy is the amount of nuclear interaction that deteriorates the dose concentration owing to the Bragg curve. Utilizing the dedicated secondary beam course for R&D studies at HIMAC, we measured the total energy loss of $^{11}$ C ions in a scintillator block that simulates the soft tissue in human bodies. In addition to the total absorption $^{11}$ C peak, non-negligible bump-shaped contribution is observed in the energy spectrum. The origin of the bump contribution can be nuclear interaction of the incident $^{11}$ C ions with hydrogen and carbon atoms. Further studies to reduce the ambiguity in dose distribution are mentioned.

  • PDF

Practical Considerations in Preparing an Institutional Procedure of Image Guided Radiation Therapy (방사선 치료용 영상 장치 지침서 작성을 위한 실용적인 고려사항)

  • Yi, Byong Yong
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.205-212
    • /
    • 2013
  • Recent developments of image guided radiation therapy (IGRT), especially the On Board Imaging (OBI) system and the cone beam CT (CBCT), enable the radiation treatment more accurate and reliable. IGRT is widely used in the radiation therapy as a standard of care. Use of IGRT is even expected to increase in the near future. IGRT is only beneficial to patients when it is used with proper considerations of safety and appropriateness of the techniques. Institutional procedure should be developed based on the clinical need and the deep understanding of the system before applying the new technique to the clinic. Comprehensive QA program should be established before to the clinic and imaging dose should be considered when preparing the departmental practice guidelines for IGRT.

Research for Lateral Penumbra and Dose Distribution When Air Gap Changing in Proton Therapy Case (양성자치료시 Air Gap 변화에 따른 Lateral Penumbra와 선량분포 변화에 대한 비교 및 연구)

  • Kim, Jae-Won;Sim, Jin-Seob;Jang, Yo-Jong;Kang, Dong-Yun;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • Purpose: In the treatment of high-energy protons Air gap (the distance between the patient and the exit Beam) Lateral Penumbra of the changes to the increase in the radiation fields can form unnecessary and Increase the maximum dose at the site of treatment and reduced the minimum dose homogeneity of dose distributions can decline. Air gap due to this change in dose distribution compared to investigate studied. Materials and Methods: Received proton therapy at our institution Lung, Liver patients were selected and the size of six other Air gap in Field A and Field B 2, 4, 6, 8, 10 cm Proton external beam planning system by setting up a treatment plan established. Air gap according to the Lateral Penumbra area and DVH (Dose Volume Histogram) to compare the maximum dose and minimum dose of PCTV areas were compared. In addition, the dose homogeneity within PCTV Homogeneity index to know the value and compared. Results: Air gap (2, 4, 6, 8, 10 cm) at each change in field size were analyzed according to the Lateral Penumbra region Field A Change in the Air gap 2~10 cm by 1.36~1.75 cm, the average continuously increased about 28.7% and Field B Change in the Air gap 2~10 cm by 1.36~1.75 cm, the average continuously increased about 31.6%. The result of DVH analysis for relative dose of the maximum dose According to Air gap 2~10 cm is the mean average of 110.3% from 108.1% to a sustained increased by approximately 2.03% and The average relative dose of minimum dose is the mean average of 93.9% percent to 90.8 percent from the continuous decrease of about 3.31 percent. The result of Homogeneity index value to the according to Air gap 2~10 cm is the 2-fold increase from 1.09 to 2.6. Conclusion: In proton therapy case, we can see the increasing of lateral penumbra area when airgap getting increase. And increasing of Dmax and decreasing Dmin in the field are making increase homogeneity index, So we can realize there are not so good homogeneity in the PCTV. Therefore we should try to minimize air gap in proton therapy case.

  • PDF

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center (국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발)

  • Lee, Nuri;Kim, Tae Yoon;Kang, Dong Yun;Choi, Jae Hyock;Jeong, Jong Hwi;Shin, Dongho;Lim, Young Kyung;Park, Jeonghoon;Kim, Tae Hyun;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.

Comparison of Volumetric Modulated Arc Therapy and Non-coplanar Fixed-field Intensity Modulated Radiation Therapy for Irregular Target adjacent to Organ At Risk (손상위험장기에 인접한 불규칙한 모양의 타겟 치료 시, 용적변조회전 방사선치료와 비동일평면상의 빔을 이용한 세기변조 방사선치료의 유용성 평가 및 비교)

  • Kim, Kyung Ah;Na, Kyung Soo;Seo, Seok Jin;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.57-68
    • /
    • 2017
  • Purpose: The purpose of this study was to compare volumetric modulated arc therapy(VMAT) with fixed-field intensity modulated radiation therapy(IMRT) using non-coplanar beam when the shape of target is irregular and the location is adjacent to organ at risk(OAR). Materials and Methods: The subjects of this study were a total of 6 patients who had radiation therapy for whole scalp(2 patients), partial scalp(2 patients), and whole ventricle(2 patients) by True Beam STX(Varian Medical Systems, USA). VMAT plans consisted of coplanar or non-coplanar arcs which can minimize the volume of OAR included in beamlets. All fixed-field IMRT plans consisted of non-coplanar beams using more than 2 angles of Couch. Results: The VMAT and IMRT plans were compared with regard to the maximum dose of both lens, both optic nerves, optic chiasm, and brain stem and the mean dose of both eyeballs and hippocampus. VMAT plans showed higher dose than ncIMRT plans at more than 6 of all OARs in every patient, and the ratio was from 1.1 times to 8.2 times. In case of total scalp and partial scalp, the volume of brain which received more than 20 Gy in the VMAT plans was 2 times larger than the volume in the ncIMRT plans. In case of whole ventricle, there was no significant difference. Target coverage was satisfied in both plans($PTV_{100%}=95%$). The maximum dose in target volume and required monitor unit(MU) of ncIMRT were higher than them of VMAT plans. Conclusion: Even though ncIMRT is less efficient than VMAT with regard to required MU and treatment time, the dose to OARs is much lower than VMAT and PTV Coverage is similar with VMAT. If the shape of target is irregular and location is adjacent to OAR, comparison VMAT plan with ncIMRT plan deserves to be considered.

  • PDF

Quality Assurance System for Determination of Center Position in X-ray and Proton Irradiation Fields using a Stainless Ball and Imaging Plates in Proton Therapy at PMRC

  • Yasuoka, Kiyoshi;Ishikawa, Satoko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.189-191
    • /
    • 2002
  • In the proton therapy using a gantry system, periodical verification of iso-center position is very important to assure precision of patient positioning system at any gantry angles in proton treatment. In the gantry system, there are three different types of iso-center; 1) in a geometrical view, 2) in an X-ray beam's eye view, 3) in a proton beam's eye view. Idealistically, they would be an identical point. They could, however, be different points. It may be a source of errors in patient positioning. At PMRC, we have established a system of verification for iso-center positions using a stainless ball of 2-cm in diameter and an imaging plate. This system provides the relation among a center of a patient target position, a center of proton irradiation field, and/or a center of X-ray field in accuracy of 50$\square$m in the 2) and 3) views, as images of a center of the stainless ball and a center of a 100 mm${\times}$100 mm-aperture brass collimator recorded on the imaging plate, which is setup at 1-cm behind the ball. In addition, it provides simultaneously the images of the ball and the collimator on an imaging intensifier (II), which is setup downstream of the proton or X-ray beam. We present a method of quality assurance (QA) for calibration of iso-center position in a rotation gantry system at PMRC and the performance of this system. A proton beam position on the 1$\^$st/ scatterer in the nozzle of the gantry affects less sensitive (reduced by a factor of 1/5) to the results of the iso-center position. The effect is systematically correctable. The effect of the nozzle (or the collimator) position is less than 0.5 mm at the maximum extraction (390 mm).

  • PDF

Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse

  • Kumar, Rajneesh;Devi, Shaloo
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.701-710
    • /
    • 2017
  • In this study, the thermoelastic beam in modified couple stress theory due to laser source and heat flux is investigated. The beam are heated by a non-Guassian laser pulse and heat flux. The Euler Bernoulli beam theory and the Laplace transform technique are applied to solve the basic equations for coupled thermoelasticity. The simply-supported and isothermal boundary conditions are assumed for both ends of the beam. A general algorithm of the inverse Laplace transform is developed. The analytical results have been numerically analyzed with the help of MATLAB software. The numerically computed results for lateral deflection, thermal moment and axial stress due to laser source and heat flux have been presented graphically. Some comparisons have been shown in figures to estimate the effects of couple stress on the physical quantities. A particular case of interest is also derived. The study of laser-pulse find many applications in the field of biomedical, imaging processing, material processing and medicine with regard to diagnostics and therapy.