• Title/Summary/Keyword: Therapeutic mechanism

Search Result 907, Processing Time 0.028 seconds

Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms

  • Dongjoon Im;Tae Su Choi
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.263-272
    • /
    • 2024
  • Amyloid-β (Aβ) is one of the amyloidogenic intrinsically disordered proteins (IDPs) that self-assemble to protein aggregates, incurring cell malfunction and cytotoxicity. While Aβ has been known to regulate multiple physiological functions, such as enhancing synaptic functions, aiding in the recovery of the blood-brain barrier/brain injury, and exhibiting tumor suppression/antimicrobial activities, the hydrophobicity of the primary structure promotes pathological aggregations that are closely associated with the onset of Alzheimer's disease (AD). Aβ proteins consist of multiple isoforms with 37-43 amino acid residues that are produced by the cleavage of amyloid-β precursor protein (APP). The hydrolytic products of APP are secreted to the extracellular regions of neuronal cells. Aβ 1-42 (Aβ42) and Aβ 1-40 (Aβ40) are dominant isoforms whose significance in AD pathogenesis has been highlighted in numerous studies to understand the molecular mechanism and develop AD diagnosis and therapeutic strategies. In this review, we focus on the differences between Aβ42 and Aβ40 in the molecular mechanism of amyloid aggregations mediated by the two additional residues (Ile41 and Ala42) of Aβ42. The current comprehension of Aβ42 and Aβ40 in AD progression is outlined, together with the structural features of Aβ42/Aβ40 amyloid fibrils, and the aggregation mechanisms of Aβ42/Aβ40. Furthermore, the impact of the heterogeneous distribution of Aβ isoforms during amyloid aggregations is discussed in the system mimicking the coexistence of Aβ42 and Aβ40 in human cerebrospinal fluid (CSF) and plasma.

Role of endoscopic duodenojejunal bypass liner in obesity management and glycemic control

  • Willian Ferreira Igi;Victor Lira de Oliveira;Ayah Matar;Diogo Turiani Hourneaux de Moura
    • Clinical Endoscopy
    • /
    • v.57 no.3
    • /
    • pp.309-316
    • /
    • 2024
  • The treatment of obesity and its comorbidities ranges from clinical management involving lifestyle changes and medications to bariatric and metabolic surgery. Various endoscopic bariatric and metabolic therapies recently emerged to address an important therapeutic gap by offering a less invasive alternative to surgery that is more effective than conservative therapies. This article comprehensively reviews the technical aspects, mechanism of action, outcomes, and future perspectives of one of the most promising endoscopic bariatric and metabolic therapies, named duodenojejunal bypass liner. The duodenojejunal bypass liner mimics the mechanism of Roux-en-Y gastric bypass by preventing food contact with the duodenum and proximal jejunum, thereby initiating a series of hormonal changes that lead to delayed gastric emptying and malabsorptive effects. These physiological changes result in significant weight loss and improved metabolic control, leading to better glycemic levels, preventing dyslipidemia and non-alcoholic fatty liver disease, and mitigating cardiovascular risk. However, concern exists regarding the safety profile of this device due to the reported high rates of severe adverse events, particularly liver abscesses. Ongoing technical changes aiming to reduce adverse events are being evaluated in clinical trials and may provide more reliable data to support its routine use in clinical practice.

Recombinant Human Thioredoxin-1 Protects Macrophages from Oxidized Low-Density Lipoprotein-Induced Foam Cell Formation and Cell Apoptosis

  • Zhang, Hui;Liu, Qi;Lin, Jia-Le;Wang, Yu;Zhang, Ruo-Xi;Hou, Jing-Bo;Yu, Bo
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • Oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and apoptosis play critical roles in the pathogenesis of atherosclerosis. Thioredoxin-1 (Trx) is an antioxidant that potently protects various cells from oxidative stress-induced cell death. However, the protective effect of Trx on ox-LDL-induced macrophage foam cell formation and apoptosis has not been studied. This study aims to investigate the effect of recombinant human Trx (rhTrx) on ox-LDL-stimulated RAW264.7 macrophages and elucidate the possible mechanisms. RhTrx significantly inhibited ox-LDL-induced cholesterol accumulation and apoptosis in RAW264.7 macrophages. RhTrx also suppressed the ox-LDL-induced overproduction of lectin-like oxidized LDL receptor (LOX-1), Bax and activated caspase-3, but it increased the expression of Bcl-2. In addition, rhTrx markedly inhibited the ox-LDL-induced production of intracellular reactive oxygen species (ROS) and phosphorylation of p38 mitogen-activated protein kinases (MAPK). Furthermore, anisomycin (a p38 MAPK activator) abolished the protective effect of rhTrx on ox-LDL-stimulated RAW264.7 cells, and SB203580 (a p38 MAPK inhibitor) exerted a similar effect as rhTrx. Collectively, these findings indicate that rhTrx suppresses ox-LDL-stimulated foam cell formation and macrophage apoptosis by inhibiting ROS generation, p38 MAPK activation and LOX-1 expression. Therefore, we propose that rhTrx has therapeutic potential in the prevention and treatment of atherosclerosis.

Management of Neuropathic Pain (신경병성 통증의 치료)

  • Kim, Yeong-In
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.7 no.2
    • /
    • pp.274-280
    • /
    • 1999
  • A variety of mechanism may generate pain resulting from injury to the central and peripheral nervous system. None of these mechanism is disease-specific, and several different pain mechanism may be simultaneously present in anyone patient, independent of diagnosis. Diagnosis of neuropathic pain is often easily made from information gathered on neurologic examination and from patient history. Although treatment of neuropathic pain may be difficult, optimum treatment can be achieved if the neurologist has a complete understanding of therapeutic options, the mainstay of which is pharmacotherapy. Selection of an appropriate rharmacologic agent is by trial and error since individual responses to different agents, doses, and serum levels are highly variable. An adequate trial for each agent tried is key to pharmacologic treatment of neuropathic pain. Tricyclic antidepressants are first-line agents, although other drugs, including anticonvulsants, local anesthetic antiarrhythmics, clonidine, opiates, and certain topical agents, also offer pain relief in some patient populations. The novel antidepressants venlafaxine and nefazodone are potentially useful new drugs that are better tolerated than tricyclic antidepressants. Also Gabapentine seems an interesting and promising drug for the treatment of neuropathic pain.

  • PDF

Tricyclic antidepressant amitriptyline inhibits 5-hydroxytryptamine 3 receptor currents in NCB-20 cells

  • Park, Yong Soo;Myeong, Seok Ho;Kim, In-Beom;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.585-595
    • /
    • 2018
  • Amitriptyline, a tricyclic antidepressant, is commonly used to treat depression and neuropathic pain, but its mechanism is still unclear. We tested the effect of amitriptyline on 5-hydroxytryptamine 3 ($5-HT_3$) receptor currents and studied its blocking mechanism because the clinical applications of amitriptyline overlapped with $5-HT_3$ receptor therapeutic potentials. Using a whole-cell voltage clamp method, we recorded the currents of the $5-HT_3$ receptor when 5-HT was applied alone or co-applied with amitriptyline in cultured NCB-20 neuroblastoma cells known to express $5-HT_3$ receptors. To elucidate the mechanism of amitriptyline, we simulated the $5-HT_3$ receptor currents using Berkeley $Madonna^{(R)}$ software and calculated the rate constants of the agonist binding and receptor transition steps. The $5-HT_3$ receptor currents were inhibited by amitriptyline in a concentration-dependent, voltage-independent manner, and a competitive mode. Amitriptyline accelerated the desensitization of the $5-HT_3$ receptor. When amitriptyline was applied before 5-HT treatment, the currents rose slowly until the end of 5-HT treatment. When amitriptyline was co-applied with 5-HT, currents rose and decayed rapidly. Peak current amplitudes were decreased in both applications. All macroscopic currents recorded in whole cell voltage clamping experiments were reproduced by simulation and the changes of rate constants by amitriptyline were correlated with macroscopic current recording data. These results suggest that amitriptyline blocks the $5-HT_3$ receptor by close and open state blocking mechanisms, in a competitive manner. We could expand an understanding of pharmacological mechanisms of amitriptyline related to the modulation of a $5-HT_3$ receptor, a potential target of neurologic and psychiatric diseases through this study.

3,4,5-Trihydroxycinnamic Acid Inhibits Lipopolysaccharide-Induced Inflammatory Response through the Activation of Nrf2 Pathway in BV2 Microglial Cells

  • Lee, Jae-Won;Choi, Yong-Jun;Park, Jun-Ho;Sim, Jae-Young;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2013
  • 3,4,5-Trihydroxycinnamic acid (THC) is a derivative of hydroxycinnamic acids, which have been reported to possess a variety of biological properties such as anti-inflammatory, anti-tumor, and neuroprotective activities. However, biological activity of THC has not been extensively examined. Recently, we reported that THC possesses anti-inflammatory activity in LPS-stimulated BV2 microglial cells. However, its precise mechanism by which THC exerts anti-inflammatory action has not been clearly identified. Therefore, the present study was carried out to understand the anti-inflammatory mechanism of THC in BV2 microglial cells. THC effectively suppressed the LPS-induced induction of pro-inflammatory mediators such as NO, TNF-${\alpha}$, and IL-$1{\beta}$. THC also suppressed expression of MCP-1, which plays a key role in the migration of activated microglia. To understand the underlying mechanism by which THC exerts these anti-inflammatory properties, involvement of Nrf2, which is a cytoprotective transcription factor, was examined. THC resulted in increased phosphorylation of Nrf2 with consequent expression of HO-1 in a concentration-dependent manner. THC-induced phosphorylation of Nrf2 was blocked with SB203580, a p38 MAPK inhibitor, indicating that p38 MAPK is the responsible kinase for the phosphorylation of Nrf2. Taken together, the present study for the first time demonstrates that THC exerts anti-inflammatory properties through the activation of Nrf2 in BV2 microglial cells, suggesting that THC might be a valuable therapeutic adjuvant for the treatment of inflammation-related disorders in the CNS.

The Neurological Effect and Mechanism of Mirror Therapy in Adults With Stroke (뇌졸중 환자를 대상으로 한 거울치료의 효과와 신경학적 기전)

  • Kim, Yeong-Jo
    • Therapeutic Science for Rehabilitation
    • /
    • v.2 no.1
    • /
    • pp.24-35
    • /
    • 2013
  • The Purpose of this study was to determine the clinical effectiveness of mirror therapy for stroke. Moreover, this paper was designed to summarize clarified information of neurological plasticity by mirror therapy to finally define the neurological mechanism. Mirror therapy improves the stroke patients' hand and arm motor function. It also has a positive influence on recovering performance of activities of daily living and relieving pain. However, it is not evident that mirror therapy restores visual neglect. There are various ways of recovering stroke. Fundamentally, all the theories are on a bases of restoration of premotor area. Premotor area which is associated with motor control increases the activation of primary motor area and finally improves patients' motor function. If primary motor area is completely damaged, premotor area and supplementary motor substitute for primary motor area. In summary of literature survey, there are not enough evidence to verify the effectiveness and neurological mechanism of mirror therapy. In future, more researches should be conducted to verify the neurological recovery through mirror therapy. Then, mirror therapy will be acknowledged as a clinically effective treatment.

Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells

  • Lee, Yoon-Jin;Park, Kwan-Sik;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.493-502
    • /
    • 2020
  • Apigenin, a naturally occurring flavonoid, is known to exhibit significant anticancer activity. This study was designed to determine the effects of apigenin on two malignant mesothelioma cell lines, MSTO-211H and H2452, and to explore the underlying mechanism(s). Apigenin significantly inhibited cell viability with a concomitant increase in intracellular reactive oxygen species (ROS) and caused the loss of mitochondrial membrane potential (ΔΨm), and ATP depletion, resulting in apoptosis and necroptosis in monolayer cell culture. Apigenin upregulated DNA damage response proteins, including the DNA double strand break marker phospho (p)-histone H2A.X. and caused a transition delay at the G2/M phase of cell cycle. Western blot analysis showed that apigenin treatment upregulated protein levels of cleaved caspase-3, cleaved PARP, p-MLKL, and p-RIP3 along with an increased Bax/Bcl-2 ratio. ATP supplementation restored cell viability and levels of DNA damage-, apoptosisand necroptosis-related proteins that apigenin caused. In addition, N-acetylcysteine reduced ROS production and improved ΔΨm loss and cell death that were caused by apigenin. In a 3D spheroid culture model, ROS-dependent necroptosis was found to be a mechanism involved in the anti-cancer activity of apigenin against malignant mesothelioma cells. Taken together, our findings suggest that apigenin can induce ROS-dependent necroptotic cell death due to ATP depletion through mitochondrial dysfunction. This study provides us a possible mechanism underlying why apigenin could be used as a therapeutic candidate for treating malignant mesothelioma.

Protein Tyrosine Phosphatase, Receptor Type B (PTPRB) Inhibits Brown Adipocyte Differentiation through Regulation of VEGFR2 Phosphorylation

  • Kim, Ji Soo;Kim, Won Kon;Oh, Kyoung-Jin;Lee, Eun-Woo;Han, Baek Soo;Lee, Sang Chul;Bae, Kwang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.645-650
    • /
    • 2019
  • Brown adipocytes have an important role in the regulation of energy balance through uncoupling protein-1 (UCP-1)-mediated nonshivering thermogenesis. Although brown adipocytes have been highlighted as a new therapeutic target for the treatment of metabolic diseases, such as obesity and type II diabetes in adult humans, the molecular mechanism underlying brown adipogenesis is not fully understood. We recently found that protein tyrosine phosphatase receptor type B (PTPRB) expression dramatically decreased during brown adipogenic differentiation. In this study, we investigated the functional roles of PTPRB and its regulatory mechanism during brown adipocyte differentiation. Ectopic expression of PTPRB led to a reduced brown adipocyte differentiation by suppressing the tyrosine phosphorylation of VEGFR2, whereas a catalytic inactive PTPRB mutant showed no effects on differentiation and phosphorylation. Consistently, the expression of brown adipocyte-related genes, such as UCP-1, $PGC-1{\alpha}$, PRDM16, $PPAR-{\gamma}$, and CIDEA, were significantly inhibited by PTPRB overexpression. Overall, these results suggest that PTPRB functions as a negative regulator of brown adipocyte differentiation through its phosphatase activity-dependent mechanism and may be used as a target protein for the regulation of obesity and type II diabetes.

Integrative applications of network pharmacology and molecular docking: An herbal formula ameliorates H9c2 cells injury through pyroptosis

  • Zhongwen Qi;Zhipeng Yan;Yueyao Wang;Nan Ji;Xiaoya Yang;Ao Zhang;Meng Li;Fengqin Xu;Junping Zhang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.228-236
    • /
    • 2023
  • Background: QiShen YiQi pills (QSYQ) is a Traditional Chinese Medicine (TCM) formula, which has a significant effect on the treatment of patients with myocardial infarction (MI) in clinical practice. However, the molecular mechanism of QSYQ regulation pyroptosis after MI is still not fully known. Hence, this study was designed to reveal the mechanism of the active ingredient in QSYQ. Methods: Integrated approach of network pharmacology and molecular docking, were conducted to screen active components and corresponding common target genes of QSYQ in intervening pyroptosis after MI. Subsequently, STRING and Cytoscape were applied to construct a PPI network, and obtain candidate active compounds. Molecular docking was performed to verify the binding ability of candidate components to pyroptosis proteins and oxygen-glucose deprivation (OGD) induced cardiomyocytes injuries were applied to explore the protective effect and mechanism of the candidate drug. Results: Two drug-likeness compounds were preliminarily selected, and the binding capacity between Ginsenoside Rh2 (Rh2) and key target High Mobility Group Box 1 (HMGB1)was validated in the form of hydrogen bonding. 2 μM Rh2 prevented OGD-induced H9c2 death and reduced IL-18 and IL-1β levels, possibly by decreasing the activation of the NLRP3 inflammasome, inhibiting the expression of p12-caspase1, and attenuating the level of pyroptosis executive protein GSDMD-N. Conclusions: We propose that Rh2 of QSYQ can protect myocardial cells partially by ameliorating pyroptosis, which seems to have a new insight regarding the therapeutic potential for MI.