• 제목/요약/키워드: Theoretical wave

Search Result 853, Processing Time 0.028 seconds

A Study on the Determination of Wave Load Acting on Offshore Structures (해저 석유개발을 위한 해양구조물의 기본 설계/해석 및 실험기법 개발 -해양구조물에 작용하는 파랑하중 산정에 관한 연구)

  • 이근무
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.6-10
    • /
    • 2000
  • In this paper various methods of determining of wave loads acting ofshore structures including impact load due to breaking wave are studied and corresponding model test was performed. In the theoretical approach wave load by nonbreaking wave and impact load by breaking wave is determined by Morrison's equation Goda's equation and impact wave equation, In the experimental approach wave load by nonbreaking wave acting on cylindrical pile used in offshore structures is determined by measuring the strain on a cylindrical pile and compared with theoretical calue. in the numerical approach impact load by breaking wave acting on a modeled cylindrical pile is calculated by usign ANSYS FEM program and compared with theoretical value. It is found that the experimental and numerical results are comparable to theoretical results, Thus the determination of wave load acting on offshore structures can be obtained by a proposed methods and it acceptable.

  • PDF

Stream Function Wave Theory에 관한 고찰

  • 여운광;편종근
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1983.07a
    • /
    • pp.78-79
    • /
    • 1983
  • It is well known that small amplitude wave theory, a first approximation to the complete theoretical description of wave behavior, yields a maximum investment in mathematical endeavor. But, if the wave amplitude is large, the small amplitude considerations are not valid, and finite amplitude wave theory which retains higher-order terms to obtain an accurate representation of the wave motion is numercal theory. The Stream function wave theory, one of the numerical methods, was developed by Dean for use with asymmetric measured wave profiles and with symmetric theoretical wave profiles. Dalrymple later improved the comjputational procedure by adding two Lagrangian constraints so that more efficient convergence of the iterative numerical method to a specified wave heigh and to a zero mean free surface displacement resulted. This paper introduces in details the Dean and Darlymple Stream Function Method in case of the symmetric theoretical wave, because in design purposes, wave height and wave period are given.

  • PDF

Change of Wave-Making Resistance Depending on Varying Draft (흘수변화(吃水變化)에 따른 조파저항(造波抵抗)의 변화(變化))

  • S.I.,Ma;Y.B.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.4
    • /
    • pp.11-18
    • /
    • 1976
  • In 1925 Havelock compared theoretical wave resistance with experimental one varying draft, in which the two ship's forms were different from each other. So, in this paper theoretical wave resistance was compared with the experimental one on the ship of the same form. And, though Havelock calculated theoretical wave resistance by mathematical artifice, in this paper it was calculated by computer using the method of numerical integration. In Havelock's paper, the increment of wave resistance decreased when the draft increased. but in this paper the conclusion is changed: the increment of wave resistance increases when the draft increases. The reason is supposed by the effect of the displacement of the ship.

  • PDF

Stress Evaluation by Measuring Ultrasonic Velocity (초음파 음속측정에 의한 응력평가에 관한 연구)

  • Lee, Bum-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.138-144
    • /
    • 1999
  • Longitudinal wave and shear wave velocity changes of PMMA Polymer meterial under the the unidirection load were measured. The Third-order elastic modulus and acousto-elastic modulus of PMMA are obtained. The theoretical and experemental values of the velocity change of each wave by stress are compared each other and the validity of theoretical expression is examinated.

  • PDF

Analytical Study for dispersed Phase Velocity Information of Love Waves (러브파의 위상속도 분산정보에 관한 해석적 연구)

  • 이일화
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.391-399
    • /
    • 2004
  • This paper investigated the dispersion characteristics of horizontal surface waves as means to apply conversional SASW techniques. To verify this proposal, 3D finite element analysis and Transfer matrix solution were performed. SH wave(Love waves) has the some advantages in comparison with Rayleigh wave. Representatively, Love wave has a characteristics not affected by compression wave. These characteristics have the robust applicability for the surface wave investigation techniques. In this study, for the purpose of employing Love wave in the SASW method, the dispersion characteristics of the Love wave was extensively investigated by the theoretical and numerical approaches. The 3-D finite element and transfer matrix analyses for the half space and two-layer systems were performed to determine the phase velocities from Love wave as well as from both the vertical and the horizontal components of Rayleigh wave. Preliminary, numerical simulations and theoretical solutions indicated that the dispersion characteristics of horizontal surface wave(Love waves) can be sufficiently sensitive and appliable to SASW techniques.

Theoretical study on compression wave propagating in a sudden reduction duct (급축소관을 전파하는 압축파에 관한 이론적 연구)

  • Kim, Hui-Dong;Kim, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.89-98
    • /
    • 1997
  • Compression waves propagating in a high speed railway tunnel impose large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations can cause ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, a steady theory of Chester-Chisnell- Whitham was applied to a simple shock tube with a sudden cross-sectional area reduction to model trains inside the tunnel. The results of the present theoretical analysis were compared with the experiments of the shock tube. The results show that the reflected compression wave from the model becomes stronger as the strength of incident compression wave and the blockage ratio increase. However, the compression wave passing through the model is not strongly dependent on the blockage ratio. The theoretical results are in good agreement with the experiments.

Theoretical observation of waves in cancellous bone

  • Yoon, Young-June;Chung, Jae-Pil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.419-424
    • /
    • 2020
  • Poroelasticity theory has been widely used for detecting cancellous bone deterioration because of the safe use for humans. The tortuosity itself is an important indicator for ultrasound detection for bone diseases. The transport properties of cancellous bone are also important in bone mechanotransduction. In this paper, two important factors, the wave velocity and attenuation are examined for permeability (or tortuosity). The theoretical calculation for the relationship between the wave velocity (and attenuation) and permeability (or tortuosity) for cancellous bone is shown in this study. It is found that the wave along the solid phase (trabecular struts) is influenced not by tortuosity, but the wave along the fluid wave (bone fluid phase) is affected by tortuosity significantly. However, the attenuation is different that the attenuation of a fast wave has less influence than that of a slow wave because the slow wave is observed by the relative motion between the solid and fluid phases.

Joint Inversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (II) - Verification and Application of Joint Inversion Analysis - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(II) - 동시역산해석기법의 검증 및 적용 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.155-165
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. Numerical analysis, theoretical model test, and field test were performed to verify the joint inversion analysis. Results from 2D, 3D finite element analysis were compared with those from the transfer matrix method in the numerical analysis. On the other hand, the difference of results from each inversion analysis was investigated in the theoretical model analysis. Finally, practical applicability of the joint inversion analysis was verified by performing field test. As a result, it is confirmed that considering dispersion information of each wave simultaneously prevents excessive divergence and improves accuracy.

The Characteristics of Pulsating Flow in a Hydraulic Pipe (유압관로에서 맥동유동 특성에 관한 연구)

  • 모양우;유영태;김지화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.653-665
    • /
    • 2001
  • The characteristics of the pulsating flow in a hydraulic pipe have been investigated. It is necessary to study the power control of the power transmission system in the landing gear system of aircraft and the design of robots. In this system, the power transmission pipeline is composed of a hydraulic system, and the operating flow is unsteady flow. The wave equation varying with frequency is analyzed in order to investigate the characteristics of unsteady flow in such a pipe. This wave equation involves the propagation coefficient in terns of frequency and viscosity. The theoretical result of this wave equation are compared with experimental result. Each wave equation, varying with the propagation coefficient, is analyzed theoretically. then, a sinusoidal wave generator is built in order to make better sinusoidal waves, and a rectifier is built to eliminate the noise from the hydraulic pump. The theoretical results of the wave equation in the flow of viscous fluid agree well with experimental results.

  • PDF

Development of a Wave Absorbing System Using a Liquefied Sandbed

  • Kang, Yoon-Koo;Takahashi, Shigeo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.9-16
    • /
    • 2006
  • A new wave-absorbing system, called the liquefied sandbed wave barrier (LSWB) system, is currently under development at the Port and Airport Research Institute (PARI) of Japan. The wave damping effect by the LSWB system is substantial, as confirmed by small-scale experiments and FEM numerical calculations, i.e., the wave transmission coefficient of the system is less than 0.2. Here, the results of large-scale experiments arediscussed in view of practical application. Although the LSWB system provides high wave damping, nearly equal to theoretical values, difficulty exists in obtaining a homogeneously liquefied sandbed, due to the occurrence of liquefied sandbed compaction by cyclic wave loading, which in turn, reduces excess pare pressure and the wave damping effect. These two phenomena primarily occur when the sandbed is composed of fine sand with small permeability. Based on experimental results, we propose a design method that includes countermeasures against such problems, and a prototype LSWB system is constructed in a very large wave flume at PARI. Wave damping by the prototype LSWB system is confirmed to be quite stable and high, as predicted by theoretical calculations.