• 제목/요약/키워드: Theoretical model

검색결과 5,897건 처리시간 0.032초

Si 태양전지(太陽電池)의 표면재결합(表面再結合) 전류(電流)가 포화전류(飽和電流)에 미치는 영향(影響) (The Effect of Surface Recombination Current on the Saturation Current in Si Solar Cell)

  • 신기식;이기선;최병호
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.12-18
    • /
    • 1988
  • The effect of surface recombination current density on the saturation current density in Si solar cell has been studied. Theoretical model for surface recombination current was set up from emitter transparent model of M.A. Shibib, and saturation current of Si solar cell made by ion implantation method was also measured by digital electrometer. The theoretical surface recombination current density which is the same as saturation surface recombination current density in Shibib model was $10^{-11}[A/cm^2]$ and the measured value was ranged from $8{\times}10^{-10}$ to $2{\times}10^{-9}[A/cm^2]$. Comparing with the ideal p-n junction of Shockley, transparent emitter model shows improved result by $10^2$ order of saturation current density. But there still exists $10^2$ order of difference of saturation current density between theoretical and actual values, which are assumed to be caused by 1) leakage current through solar cell edge, 2) recombination of carriers in the depletion layer, 3) the series resistance effect and 4) the tunneling of carriers between states in the band gap.

  • PDF

Bolted T-stubs: A refined model for flange and bolt fracture modes

  • Francavilla, Antonella B.;Latour, Massimo;Piluso, Vincenzo;Rizzano, Gianvittorio
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.267-293
    • /
    • 2016
  • It is well known that, in order to accurately predict the behaviour of steel structures a requirement the definition of the mechanical behaviour of beam-to column joints is of primary importance. This goal can be achieved by means of the so-called component method, which, in order to obtain the whole behaviour of connections, provides to break up joints in basic components of deformability and resistance. One of the main joint components used to model bolted connections is the so-called equivalent T-stub in tension, which is normally used to predict the behaviour of bolted plates in bending starting from the behaviour of the single bolt rows. In past decades, significant research efforts have been devoted to the prediction of the behaviour of bolted T-stubs but, to date, no particular attention has been devoted to the characterization of their plastic deformation capacity. To this scope, the work presented in this paper, taking into account the existing technical literature, proposes a new theoretical model for predicting the whole behaviour up to failure of bolted T-stubs under monotonic loading conditions, including some complexities, such as the bolt/plate compatibility requirement and the bolt fracture, which are necessary to accurately evaluate the ultimate displacement. After presenting the advances of the proposed approach, a comparison between theoretical and experimental results is provided in order to verify its accuracy.

A Semi-empirical Model for Microwave Polarimetric Radar Backscattering from Bare Soil Surfaces

  • Oh, Yi-Sok
    • 대한원격탐사학회지
    • /
    • 제10권2호
    • /
    • pp.17-35
    • /
    • 1994
  • A semi-empirical model for microwave polarimetric radar backscattering from bare soil surfaces was developed using polarmetric radar measurements and the knowledge based on the theoretical and numerical solutions. The microwave polarimetric backscatter measurements were conducted for bare soil surfaces under a variety of roughness and moisture conditions at L-, C-, and X-band frequencies at incidence angles ranging from 10` to 70`. Since the accrate target parameters as well as the radar parameters are necessary for radar scattering modeling, a complete and accurate set of ground truth data were also collected using a laser profile meter and dielectric probes for each surface condition, from which accurate measurements were made of the rms height, correlation length, and dielectric constant. At first, the angular and spectral dependencies of the measured radar backscatter for a wide range of roughnesses and moisture conditions are examined. Then, the measured scattering behavior was tested using theoretical and numerical solutions. Based on the experimental observations and the theoretical and numerical solutions, a semi-empirical model was developed for backscattering coeffients in terms of the surface roughness parameters and the relative dielectric constant of the soil surface. The model was found to yield very good agreement with the backscattering measurements of this study as well as with independent measurements.

A theoretical mapping model for bridge deformation and rail geometric irregularity considering interlayer nonlinear stiffness

  • Leixin, Nie;Lizhong, Jiang;Yulin, Feng;Wangbao, Zhou;Xiang, Xiao
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.93-105
    • /
    • 2023
  • This paper examines a high-speed railway CRTS-II ballastless track-bridge system. Using the stationary potential energy theory, the mapping analytical solution between the bridge deformation and the rail vertical geometric irregularity was derived. A theoretical model (TM) considering the nonlinear stiffness of interlayer components was also proposed. By comparing with finite element model results and the measured field data, the accuracy of the TM was verified. Based on the TM, the effect of bridge deformation amplitude, girder end cantilever length, and interlayer nonlinear stiffness (fastener, cement asphalt mortar layer (CA mortar layer), extruded sheet, etc.) on the rail vertical geometric irregularity were analyzed. Results show that the rail vertical deformation extremum increases with increasing bridge deformation amplitude. The girder end cantilever length has a certain influence on the rail vertical geometric irregularity. The fastener and CA mortar layer have basically the same influence on the rail deformation amplitude. The extruded sheet and shear groove influence the rail geometric irregularity significantly, and the influence is basically the same. The influence of the shear rebar and lateral block on the rail vertical geometric irregularity could be negligible.

Effects of structural characteristics of screw conveyor on spewing during EPB shield tunnelling

  • Xiaochun Zhong;Siyuan Huang;Rongguo Huai;Yikang Hu;Xuquan Chen
    • Geomechanics and Engineering
    • /
    • 제35권6호
    • /
    • pp.571-580
    • /
    • 2023
  • During EPB shield tunnelling, construction speed and safety are severely affected by spewing. In this study, a theoretical seepage model is established to capture of the effects of screw conveyor geometry and turbulent flow on spewing. Experimental test results are used to verify the proposed theoretical seepage model. It is found that the seepage is greatly affected by the length of screw conveyor and soil permeability. The proposed model can increase the screw conveyor length and reduce soil discharge sections simultaneously, the permeability of treated muck thus decreases by one order of magnitude. By using the proposed theoretical seepage model, the criterion of critical soil permeability used to identify spewing is proposed. When the water head applied at tunnel face reaches 40 m and 50 m, the critical permeability coefficients of treated muck should be less than 10-5 m/s and 10-6 m/s to avoid spewing. For a given permeability coefficient of soil, the water flow rate is overestimated if structural characteristics of screw conveyor is not considered. Consequently, the occurrence of spewing is greatly overestimated, which increases construction cost substantially.

지역정보 시스템 이용모형 개발을 위한 이론적 고찰 및 실증적 연구 (Understanding the Use of Community Informatics: A Structural Equation Modeling Approach)

  • 권나현
    • 정보관리학회지
    • /
    • 제21권2호
    • /
    • pp.23-44
    • /
    • 2004
  • 본 연구의 목적은 사회심리학 이론을 토대로 지역정보 시스템 이용모형을 개발함으로써, 지역주민을 위한 정보통신 서비스의 이용을 효과적으로 설명하는데 있다. 본 연구를 위해 필자는 Ajzen의 계획적 행위 이론(Theory of Planned Behavior: TPB)을 기본모형으로 선택하였는데, 이 이론은 (1) 지역정보 서비스 이용 결과에 대한 기대, (2) 주변 사람들의 권유, (3) 이용을 가능하게 하는 내외적 요인에 대한 자신의 통제 능력의 지각 등을 기본 골격으로 한다. 계획적 행위 이론은 일반적인 사회행동의 설명에 적용되어온 사회심리 이론이므로 필자는 지역정보 시스템 이용의 행동적 특성을 연구 모형에 반영하기 위하여 두 이론 즉, 인터넷 등 매체 이용을 설명하기 위하여 널리 적용되어온 이용과 충족 이론(Uses and gratifications)과 경영정보시스템 이용을 설명하기 위하여 적용되어 온 기술수용모형(Technology Acceptance Model: TAM)을 추가적으로 검토했다. 417명의 지역정보망 시스템 이용자로 부터 수집된 실증자료를 토대로 구조방정식모형(Structural Equation Model: SEM)을 이용하여 제안된 지역정보 시스템 이용모형을 검증한 후 향상된 수정 모형을 제안했다. 그 결과, 지역정보 시스템 이용에 영향을 미치는 주요 요인들로 지역정보를 이용하고자하는 의도, 태도, 주관적 규범, 정보습득에 대한 기대, 사회적 상호작용에 대한 기대, 지역 연계에 대한 기대, 및 개인관련 규범 신념 등을 밝혀 냈다. 이러한 결과를 중심으로 본 연구의 함의와 후속 연구과제가 결론에서 논의되었다.

Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model

  • Yang, Yuqing;Mu, Zaigen;Zhu, Boli
    • Structural Engineering and Mechanics
    • /
    • 제84권1호
    • /
    • pp.113-127
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are commonly utilized to provide lateral stiffness in high-rise structures. The simplified model is frequently used instead of the fine-scale model in the design of buildings with SPSWs. To predict the lateral strength of steel plate shear walls with diagonal stiffeners (DS-SPSWs), a simplified model is presented, namely the cross brace-strip model (CBSM). The bearing capacity and internal forces of columns for DS-SPSWs are calculated. In addition, a modification coefficient is introduced to account for the shear action of the thin plate. The feasibility of the CBSM is validated by comparing the numerical results with theoretical and experimental results. The numerical results from the CBSM and fine-scale model, which represent the bearing capacity of the DS-SPSW with varied stiffened plate dimensions, are in good accord with the theoretical values. The difference in bearing capacity between the CBSM and the fine-scale model is less than 1.35%. The errors of the bearing capacity from the CBSM are less than 5.67% when compared to the test results of the DS-SPSW. Furthermore, the shear and axial forces of CBSM agree with the results of the fine-scale model and theoretical analysis. As a result, the CBSM, which reflects the contribution of diagonal stiffeners to the lateral resistance of the SPSW as well as the effects on the shear and axial forces of the columns, can significantly improve the design accuracy and efficiency of buildings with DS-SPSWs.

다단계 생산공정에 대한 공리모델 (An Axiomatic model of the multi-stage production process)

  • 안웅
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1993년도 추계학술대회발표논문집; 서강대학교, 서울; 25 Sep. 1993
    • /
    • pp.175-184
    • /
    • 1993
  • Modeling the production process is a necessary and essential aspect of the production planning. This paper introduces a theoretical model of the multi-stage production process. A multi-stage production process is regarded as a network of interrelated production activities which use system exogenous inputs of goods in production and the intermediate products transfers between activities to produce final products. Our model is characterized by (1) a few of the production-related assumptions and (2) two types of elements "goods and activities" that are represented in terms of the network terminology. This model is different from the another multi-stage production models, so-called production network models in relation to the production-theoretical concept. It is not based on the concept of the production correspondence and the activity production functions, but the technology model of Koopmans. Koopmans.

  • PDF

이차원 영상해석을 위한 은닉 마프코프 메쉬 체인 알고리즘 (Two-Dimensional Hidden Markov Mesh Chain Algorithms for Image Dcoding)

  • 신봉기
    • 한국정보처리학회논문지
    • /
    • 제7권6호
    • /
    • pp.1852-1860
    • /
    • 2000
  • Distinct from the Markov random field or pseudo 2D HMM models for image analysis, this paper proposes a new model of 2D hidden Markov mesh chain(HMMM) model which subsumes the definitions of and the assumptions underlying the conventional HMM. The proposed model is a new theoretical realization of 2D HMM with the causality of top-down and left-right progression and the complete lattice constraint. These two conditions enable an efficient mesh decoding for model estimation and a recursive maximum likelihood estimation of model parameters. Those algorithms are developed in theoretical perspective and, in particular, the training algorithm, it is proved, attains the optimal set of parameters.

  • PDF

Mechanisms of sulfate ionic diffusion in porous cement based composites

  • Gospodinov, P.;Mironova, M.;Kazandjiev, R.
    • Computers and Concrete
    • /
    • 제4권4호
    • /
    • pp.273-284
    • /
    • 2007
  • The paper considers a theoretical model for the study of the process of transfer of sulfate ions in saturated porous media - mineral composites. In its turn, the model treats diffusion of sulfate ions into cement based composites, accounting for simultaneous effects such as filling of micro-capillaries with ions and chemical products and liquid push out of them. The proposed numerical algorithm enables one to account for those simultaneous effects, as well as to model the diffusive behavior of separate sections of the considered volume, such as inert fillers. The cases studied illustrate the capabilities of the proposed model and those of the algorithm developed to study diffusion, considering the specimen complex configuration. Computations show that the theoretical assumptions enable one to qualitatively estimate the experimental evidence and the capabilities of the studied composite. The results found can be used to both assess the sulfate corrosion in saturated systems and predict and estimate damage of structures built of cement-based mineral composites.