• Title/Summary/Keyword: The water quality fluctuation characteristics

Search Result 43, Processing Time 0.024 seconds

Analysis of Environmental Factors of Geomorphology, Hydrology, Water Quality and Shoreline Soil in Reservoirs of Korea (우리나라 저수지에서 지형, 수문, 수질 및 호안 토양 환경요인의 분석)

  • Cho, HyunSuk;Cho, Kang-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.343-359
    • /
    • 2013
  • In order to understand shoreline environment characteristics of Korean reservoirs, the interrelationships between environmental factors of geomorphology, hydrology, water quality and shoreline soil were analyzed, and the reservoir types were classified according to their environmental characteristics in the 35 reservoirs selected by considering the purpose of dam operations and annual water-level fluctuations. Geomorphological and hydrological characteristics of reservoirs were correlated with the altitude and the size scale of reservoirs. The annual range of water level fluctuation showed a wide variation from 1 m to 27 m in the various reservoirs in Korea. The levels of eutrophication of most reservoirs were mesotrophic or eutrophic. From the result of the soil texture analysis, sand contents were high in reservoir shorelines. Range, frequency and duration of water-level fluctuation were distinctive from the primary function of reservoirs. Flood control reservoirs had a wide range with low frequency and waterpower generation reservoirs had a narrow range with high frequency in the water-level fluctuation. According to the result of CART (classification and regression tree) analysis, the water quality of reservoirs was classified by water depth, range of water-level fluctuation and altitude. The result of PCA (principal component analysis) showed that the type of reservoirs was classified by reservoir size, water-level fluctuation, water quality, soil texture and soil organic matter. In conclusion, reservoir size, the water-level fluctuation, water quality and soil characteristics might be major factors in the environment of reservoir shorelines in Korea.

Difference in Shoreline Flora According to the Usage of Reservoirs in Korea (우리나라 저수지의 용도에 따른 호안 식물상 차이)

  • Cho, Hyunsuk;Cho, Kang-Hyun
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.339-347
    • /
    • 2015
  • Differences in characteristics of flora and environmental factors of geomorphology, hydrology, water quality and soil were investigated in the shoreline of total 35 reservoirs according to their usages of waterpower generation, agricultural water supply, residential and industrial water supply and flood control in Korea. The number of plant species, floral structure and characteristics of species traits in the shoreline of reservoirs were different according to their usage. From the results of stepwise regression analysis, the total number of vascular plant species was increased at the environment of the higher flood frequency at the median water level and the longer exposure duration of the shoreline. The results of principal coordinates analysis and cluster analysis showed that the shoreline flora was classified as the 3 types of 1) flood control and residential and industrial water supply, 2) agricultural water supply and 3) waterpower generation reservoirs. The water level fluctuation, flood frequency at the median water level, lake water quality index and exposure duration of the shoreline were selected as important environmental factors affected on the characteristics of shoreline flora. The species richness of total flora and hydrophytes, especially submerged macrophytes, were much higher in the reservoirs for the purpose of the waterpower generation in which mesotrophic water quality and stable water levels were maintained. Annual or biennial ruderals were established on the ephemeral drawdown zone of flood control, residential and industrial water supply reservoirs which have oligotrophic or mesotrophic water quality and wide range of water level fluctuation. The floating hydrophytes were differentially dominated in the littoral zones of the agricultural water supply reservoirs with a mesotrophic or eutrophic water quality and a medium water level fluctuation. In conclusion environmental factors related to water level fluctuation and water quality were different and then the floral characteristics of shoreline were distinguishable according to usage of Korean reservoirs.

Effects of Hydrogeomorphology and Watershed Land Cover on Water Quality in Korean Reservoirs (우리나라 저수지 수질에 미치는 수문지형 및 유역 토지피복의 영향)

  • Cho, Hyunsuk;Cho, Hyung-Jin;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.79-88
    • /
    • 2019
  • In order to study the water quality status and its causal environmental factors, the water quality variables of chemical oxygen demand (COD), chlorophyll a (Chl a), Total phosphorus (TP), and total nitrogen (TN), the hydrogeomorphologic variables of water level fluctuation, total water storage, dam elevation, watershed area, and shoreline development index, and the land cover variables of forest, agricultural area, and urbanized area in the watershed were investigated in total 73 reservoirs with various operational purposes, water level fluctuation and geographical distribution in South Korea. The water quality was more eutrophic in the reservoirs of the more urbanized and agricultural area in the watershed, the low altitude, the narrow water level fluctuation, the narrowed watershed area, and the more circular shape. In terms of the purposes of reservoir operation, the reservoirs for agricultural irrigation were more eutrophic than the reservoirs for flood control. The results of the variable selection and path analysis showed that COD determined by Chl a and TP was directly affected by water level fluctuation and the shoreline development of the reservoirs. TP was directly affected by the urbanized area of the watershed which was related to the elevation of the reservoir. TP was also influenced by the water level fluctuation and the shoreline development. In conclusion, the eutrophication of the reservoirs in Korea would be influenced by the land use of the watershed, hydrological and geographical characteristics of the reservoir, water level fluctuation by the anthropogenic management according to the reservoir operation purpose, and the location of the reservoirs.

Changes in Characteristics of Sewer Flow & Its Water Quality from the Sewer Rehabilitation Area (하수관거 정비지역의 관거이송 유량 및 수질특성 변화)

  • Park, Jun Dae;Oh, Seung Young;Choi, Yun Ho;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.196-208
    • /
    • 2015
  • This study analyzed the characteristics of sewer flow and its water quality, and investigated changes in the characteristics in three areas where the sewer rehabilitation projects have been carried out. In S1 area, the patterns of the flow became regular and the range of the fluctuation decreased after the sewer rehabilitation. The flow and its BOD concentration increased. The infiltration/inflow and exfiltration showed clear distinction before and after the sewer rehabilitation in this area. In S2 area, the patterns and the range of the fluctuation of the flow made no differences before and after the sewer rehabilitation. The flow decreased slightly and its BOD concentration increased considerably after the sewer rehabilitation. Big decrement in stormwater inflow but small in exfiltration appeared in this area. In S3 area, the patterns and the range of the fluctuation of the flow made no differences before and after the sewer rehabilitation. The flow decreased slightly and its BOD concentration increased in a small rate in this area.

A Study on the Pollution Sources of Simple water Supply Piped System using Statistical Analysis (통계적 분석을 이용한 간이급수시설의 오염원에 관한 연구)

  • 이홍근;김현용;백도현;김지영;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.56-67
    • /
    • 1999
  • This study was performed to suggest the basic data and plans for the establishment of safe water supply plans in simple water supply piped system in the rural areas. In 4 different places, 24 points of water sources 36 points of taps from water sources were sampled. Of the whole 60 points, 55 points were ground water and 5 points were surface water. 14 items were measured for the analysis of water quality on each samples. The measured items were analyzed again by statistical method ; cluster analysis and principle components analysis. The results of this study are as followed. 1) In water quality analysis on water sources, 4 items, bacteria, E.coli, NH3-N and Fe exceed the standard. Of 24 points, 20 points(83%) on bacteria, 1 point(4%) on NH3-N and Fe exceed the standard. 2) In water quality analysis on near and remote taps, 4 items, bacteria, E.coli, NH3-N and Fe , exceed the standard. Of 36 points, 20 points (81%) on bactria, 1 pint(3%) on NH3-N and Fe exceed the standard. 3)Cluster analysis on water quality shows the differences by the kinds of water sources, geographical characteristics and distance from water sources. 4) Principle components analysis on ground water shows that Factor 1 and Factor 3 are natural fluctuation by the content of soil. Also, Factor 2 and Factor 4 are penetration of pollutants to underground. Therefore, it is needed to take deeper ground water in order to prevent from pollution in the areas which have ground water as water source . 5) Principle components analysis on surface water shows that Factor 1 is penetration of vacteria from surface to water source when rainfalls. Also, Factor 2 is fluctuation of water quality by the geographical characteristics. Therefore, the counterplans against non-point pollution source must be taken. Filtration and disinfection facilities are needed in the areas which have surface water as water source.

  • PDF

The Estimation of Water Quality Changes in the Keum River Estuary by the Dyke Gate Operation Using Long-Term Data (장기관측자료에 의한 금강하구둑 수문조작에 따른 수질 변화 평가)

  • KWON Jung-No;KIM Jong-Gu;KO Tae-Seung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.348-354
    • /
    • 2001
  • This study was conducted to estimation of change characteristics for water quality by the dyke gate operation in the Keum River estuary. The estimation data made use of surveyed data in Keum River estuary by NERDI (National Fisheries Research and Development Institute) during $1990\~1999$. Shown to compare water quality changes at st. A and st. D in Figure 1, the concentrations of TSS, COD and nutrients at st. A were as high as about $2\~4$ times than those at st. D due to affection of fresh water discharge in the Keum River. The percentages of water quality change at surface water by dyke gate operation in the Keum River estuary were shown that TSS (Total Suspended Solid) was decrease to $56\%,\;47\%$ at st. A and D, and COD (Chemical Oxygen Demand) was increase to $68\%,\;71\%$ at st. A and D, respectively. The changes percentage of DIN (Dissolved Inorganic Nitrogen) by dyke gate operation in the Keum River estuary were increase high to $95\%$ at surface water and $7\sim30\%$ at bottom water, but those of DIP (Dissolved Inorganic Phosphorus) were increase to $2.8\sim8.6\%$ at surface water and $28\%$ at bottom water. The range of fluctuation for water quality at each station by dyke gate operation has shown that salinity and TSS are little better than before dyke gate operation, but COD show highly fluctuation. Also we studied estimation of characteristics of water quality change by the season, COD was increased except the summer, TSS was decreased to all season. DIN was increased to about $61\sim172.1\%$ for all season, but DIP was increased to the spring and decreased to the autumn, DIN enrichment in the estuary by dyke gate operation are interpreted to improvement of organic matter decomposition and nitrification by increasing the residence time and to increase nutrient flux in sediments due to decreasing dissolved oxygen and increasing a deposit matter.

  • PDF

Analysis of Water Quality Characteristics According to Short-term Fluctuation of Water Level in the New Dam: Focused on the Upstream Watershed of Yeongju Multipurpose Dam (신규 댐 건설 전후의 수질변동 분석: 영주댐 상류유역을 중심으로)

  • Lee, Saeromi;Park, Jae Roh;Hwang, Tae Mun;Ahn, Chang Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.431-444
    • /
    • 2020
  • The relationship between dam construction and water quality has recently come to be considered an important issue. A dam is a physical factor which causes changes to the river system around it. Considering these points, this study was conducted to obtain basic data by analyzing the relationship between water level fluctuations and water quality parameters in the short-term. In terms of methodology, the new construction of the Yeongju Dam (M5) in 2016 was divided into Stage 1 as the lotic system and Stage 2 as the lentic system, with four years in each period, and the water level fluctuations and water quality were analyzed using official data. As a result of this study, M5, a stagnant area in which organic matter and nutrients accumulate, was found to be an important factor in water quality management. In addition, the water level changed rapidly (0.9±0.2 m → 10.9±7.1 m) as the river environment condition was converted from the lotic system to the lentic system. In addition, water quality parameters such as BOD, COD, TOC, and Chl-a significantly changed in the short-term. Further, since the transport of organic matter and nutrients occurred well in the lotic system, sedimentation was expected to be dominant in the lentic system. Therefore, it was determined that when the river flow is blocked, autochthonous organic matter is an important factor for long-term water quality management in the future. This process can increase the trophic state of the water body. As a result of this study, the TSIKO value was converted from mesotrophic in Stage 1 to eutrophic in Stage 2. Eventually, short-term changes in the river environment will affect not only changes in water level but also changes in water quality. Thus, a comprehensive and strategic approach is needed for long-term water quality management in the future.

Comparison of Changes in Upstream and Downstream Water Quality of Tributary Rivers: Gyeseong-stream and Hwapo-stream in Nakdongmiryang Watershed (지류하천의 상·하류 수질변화 비교: 낙동밀양 중권역 내 계성천 화포천을 대상으로)

  • Shim, Kyuhyun;Kim, Gyeonghoon;Kim, Seongmin;Kim, Youngseok;Kim, Jin-pil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.445-452
    • /
    • 2020
  • Tributary is a part of life space for people and a very important place that accommodates rest recreation and other daily activities. absolutely insufficient basic data about water quality and flow rate are available for basin management. Efficient water and basin management systems, which are also supported by local residents can be established by securing such basic data of major tributaries in the Nakdong river system. In this study, the fluctuation characteristics of upstream and downstream water pollution levels were compared using the measurement results of the water environment measurement network and the tributary monitoring project for the gyeseong-stream and Hwapo-stream in the Nakdong-miryang watershed. In 2017, when water pollution is the highest, it was confirmed that the annual average rainfall was the lowest. Although the upstream and downstream water quality tendencies of the Gyeseong-stream are similar, the water quality concentrations of the Gyeseong-stream are relatively different. But although the Hwapo stream has various causes of pollution, there was not much difference in the level of pollution between the upper and lower streams. In addition, both rivers need the ability to purify rivers by securing sufficient water for river maintenance, and if the correlation between water quality items can be inferred through continuous monitoring of tributaries where the aspect of water quality change is unclear, water quality management Determined to be efficient operation.

Characteristics of Water Quality and factor Analysis on the Variations of Water Quality in Coastal Sea around the Keum River Estuary in Summer (하계 금강하구 주변해역의 수질특성과 수질변동 요인분석)

  • Kwon Jung-No;Kim Jong-Gu;You Sun-Jae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.3-22
    • /
    • 2000
  • To know characteristics of water quality in coastal sea around the Keum river estuary in summer, we studied the water quality of surface, middle and bottom level during Jun e~september, 1998. The mean concentrations of COD, DIN, DIP & chlorophyll-a were 1.36mg/L, 28.60㎍-at/L, 0.48㎍-at/L and 4.14㎍/L, respectively, which were over eutrophication criteria in sea water. After the Keum river dyke was constructed, seasonal freshwater discharge was largely changed. About 80% of total annual freshwater discharge was concentrated in summer as rainy season from July to September. The correlation coefficient of DIN versus salinity was shown to be high, and thus the concentration of DIN was closely related to freshwater discharge. Maximum Chlorophyll-a concentration was occurred in September, due to increased DIP concentration, high water temperature and low salinity after heavy rainfall in August. The results of Principal Component Analysis showed that the first factor represented a series of eutrophication factors, the second factor w3s a valiance of seasonal fluctuation, and the third was a variance of progress of mass change.

  • PDF

Characterization on the Variation of Streamflow at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin - (수질오염총량관리 단위유역의 유량변화 특성분석 - 금강수계를 대상으로 -)

  • Park, Jun Dae;Oh, Seung Young;Choi, Ok Youn
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.914-925
    • /
    • 2011
  • The variation of streamflow is regarded as one of the most influential factors on the fluctuation of water quality in the stream. The characteristics of the variation should be taken into account in the plans for the management of Total Maximum Daily Loads (TMDLs). This study analysed and characterized spatial distribution and temporal variation of streamflow at each unit watershed in Guem-river basin. For the analysis of the distribution of streamflow, the type and the extent of the distribution were investigated for the unit watershed. For the analysis of the variation, short and long term changes of streamflow were examined. The result showed that most of the distributions were not log-normalized and the extent of variation tends to be greater at the unit watershed placed on the tributaries in the basin. A kind of margin could be granted to the unit watershed involving high variations so as to establish the water quality goal and load allotment more reasonably and effectively in view of whole waterbody.