• Title/Summary/Keyword: The unit friction

Search Result 232, Processing Time 0.022 seconds

Experimental Study on the Friction and Wear Characteristics of Contact Sealing Unit for a Water Turbine (수차용 봉수장치의 마찰.마모특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Sihn, Ihn-Cheol;Lim, Kwang-Hyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.515-518
    • /
    • 2006
  • This paper presents the friction and wear characteristics of contact type sealing unit for a water turbine of a small hydro-power generation, which Is to stop a leakage of a circulating water from a outside of an impeller to an inside of a rolling bearing. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Vickers hardness and the hardness of silicone carbide of SiC is 714.1 in Vickers hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces aye a dry friction a water film friction and a mixed friction that is contaminated by a dust, silt and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components

  • PDF

A Study of the Friction Factor Unit Considering the Cost of Energy (에너지비용변화에 따른 경제적 단위마찰저항 값에 대한 고찰)

  • Shin, Dong-Shin;Kim, A-In;Lee, Byung-Hyun;Jung, Hyueong-Mok;Lee, Sung-Goo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • The friction factor unit was studied to find a more economic alternative compared to the conventional 30 mmAq/m. The pipe and pump for cooling water piping used in a failing were selected, and the friction factor unit was changed to calculate the pipe diameter and the brake shaft power. Based on current electric charges, After the brake shaft power was converted into operational costs based on current electric charges, then an economic analysis was conducted considering that incorporated the initial installation costs and operational costs for the pump. We found that the friction factor unit when using 20 mmAq/m is more economical than that with 30 mmAq/m, if the piping is used for more than 4 years. The small friction factor unit is desirable when the piping is used for quite a long period of time, and the selection of a more economic friction factor unit should considering the period of usage will be important.

A Comparison of Roughness Measurement and Load Transfer Test for the Calculation of Unit Skin Friction of Pile Foundation in Soft Rocks (기초 연암부 벽면거칠기 시험과 하중전이 시험 결과의 비교 및 단위주면마찰력의 산정에 대한 연구)

  • Hong, Seok-Woo;Hwang, Geun-Bae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.21-30
    • /
    • 2023
  • One of the methods for calculating unit skin friction of soft-rock-socket parts for cast-in-place piles involves the roughness measurement of the parts. The measurements are conducted during the excavation stage. A roughness measuring device is installed in the excavation hole and the unit skin friction is calculated from the measured surface roughness of the rock socket. Herein, the results of roughness measurement of rock-socket parts in cast-in-place piles and that of load transfer tests are analyzed and compared. The unit skin friction from the roughness measurements can be converted into unit skin friction corresponding to the displacement of a pile generated in a load transfer test. A reduction factor is given as Rf = -0.14n + 1.48.

Feeding Characteristics of Ball Guide in High Speed Spindle's Bearing Preload Units (고속 주축 베어링용 예압장치의 볼 가이드 이송특성)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.685-691
    • /
    • 2011
  • The Bearing preload units are used for stable rotational movements of high speed spindles. The feeding mechanism of the preload unit is important to prevent overheat of bearings and to keep constant bearing load under thermal deformation of spindle unit. In this study, ball slide guide and ball bush as feeding mechanism of preload unit are selected. The maximum static friction force, radial stiffness and damping ratio of ball slide guide with ball load, ball number and ball size are widely investigated. In conclusion, the surface of ball slide guide must be heat treated to reduce static friction force. The number and size of ball are increased to control sensitive bearing preload force.

A Study on Characteristics of the Unit Skin Friction Using the Wall Roughness in the Soft Rock (연암부 벽면거칠기를 이용한 단위주면마찰력 특성에 관한 연구)

  • Hong, Seok-Woo;Hwang, Geun-Bae
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.7-13
    • /
    • 2019
  • In the case of the drilled shaft, one of the methods for calculating unit skin friction stress of rock socket parts is to measure the roughness of the excavated face. This method is to estimate the unit skin frictional resistance using a device which measures the roughness shape of the excavated face in the excavation step. In this study, the roughness shapes of the face of the rock socket part in the drilled shaft were measured directly in the perforated hole and the results are used to identify the characteristics of the unit skin friction of the bedrock. In addition, the static load test and the load transfer test were performed on the same pile to verify the result of the roughness test.

A Study on the Friction and Wear Characteristics of Contact Sealing Units for a Small Hydro-power Turbine Under Various Rubbing Conditions (마찰접촉조건에 따른 소수력 수차용 밀봉장치의 마찰.마멸특성 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.314-319
    • /
    • 2006
  • In this paper, the friction and wear characteristics of contact type sealing unit far a water turbine have been presented. The sealing unit for a small hydropower generation is to stop a leakage of circulating water from an outside of an impeller to an inside of a rolling bearing. The friction heating between a seal ring and a seal seat may radically increase a surface temperature in which increase a power loss and wear on the rubbing surface. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Victors hardness and the hardness of silicone carbide of SiC is 714.1 in Victors hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces are a dry friction, a water film friction and a mixed friction that is contaminated by a dust, silt, and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat in primary sealing unit. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components.

Finite Element Analysis of Contact Behavior Characteristics in LPG Filling Unit Depending on Multi-ball/Cylinder Rolling Friction Motions (LPG 충전기에서 다수 볼-실린더의 구름마찰운동에 따라 달라지는 접촉거동특성에 관한 유한요소해석)

  • Kim Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, the contact stress and friction force between multi-balls and rolling friction contact surfaces of two cylinders have been presented using a finite element analysis. The multi-balls for a rolling friction motion may be contacted with a reciprocating mechanism of a parallel cylinder and a misaligned cylinder in a LPG filling unit. The FEM computed results indicate that SiC ceramic and SUS 304 balls show a high contact stress and friction force on the contact spot of rolling balls. But the PEEK balls show a low contact stress and friction loss due to a high flexibility of a PEEK polymer. In this study, we may recommend SiC and SUS 304 balls for high compressive loadings between a multi-ball and a cylinder contact mechanisms and PEEK balls for a low compressive force. And the misalignment between two cylinders should be restricted for a low contact stress and friction loss, especially.

  • PDF

Failure Mode Analysis and Friction Material Development of the KTX tread Brake (고속철도 제륜자 결함분석 및 제륜자 개발)

  • Baek, Jong-Kil;Goo, Byeong-Choon;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.109-115
    • /
    • 2011
  • The shoe brake of the KTX is used in low speed when the electric brake is not effective. The main purpose of the shoe brake is to stop the train to a desired stop point at the station. Lots of defects have been encountered in the shoe brake unit since the KTX started its operation. To improve the reliability of shoe brake unit of the KTX power car, first of all, failure modes of the KTX shoe brake unit were analyzed. Main failure modes are cracks in the shoe friction material and fracture in the welded joints of the shoe backing steel structure. Several methods to remove the defects of the shoe brake unit were proposed and on-board tests were carried out: Increase of the strength of the shoe key and shoe cam, which decreased a little the occurrence of cracks in the shoe friction material; Redesign of the shoe backing steel structure, which eliminated the occurrence of the cracks in the backing plate but could not solve completely the crack problem in the shoe friction material; Development of a new friction material, which with redesign of the shoe backing steel structure could solve satisfactorily the crack problem in the shoe friction material.

Thermomechanical Properties of Carbon Fibres and Graphite Powder Reinforced Asbestos Free Brake Pad Composite Material

  • Thiyagarajan, P.;Mathur, R.B.;Dhami, T.L.
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.117-120
    • /
    • 2003
  • Asbestos is being replaced throughout the world among friction materials because of its carcinogenic nature. This has raised an important issue of heat dissipation in the non-asbestos brake pad materials being developed for automobiles etc. It has been found that two of the components i.e. carbon fibres as reinforcement and graphite powder as friction modifier, in the brake pad material, can playa vital role in this direction. The study reports the influence of these modifications on the thermal properties like coefficient of thermal expansion (CTE) and thermal conductivity along with the mechanical properties of nonasbestos brake pad composite samples developed in the laboratory.

  • PDF

Controlling the Hardness and Tribological Behaviour of Non-asbestos Brake Lining Materials for Automobiles

  • Mathur, R.B.;Thiyagarajan, P.;Dhami, T.L.
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.6-11
    • /
    • 2004
  • In spite of unparalleled combination of essential material properties for brake linings and clutch facings, replacement for asbestos is seriously called for since it is a health hazard. Once asbestos is replaced with other material then composition and properties of brake pad changes. In certain cases hardness of the material may be high enough to affect the rotor material. In this study, hardness of the brake pad has been controlled using suitable reinforcement materials like glass, carbon and Kevlar pulp. Brake pad formulations were made using CNSL (cashew net shell liquid) modified phenolic resin as a binder, graphite or cashew dust as a friction modifier and barium sulphate, talc and wollastonite as fillers. Influence of each component on the hardness value has been studied and a proper formulation has been arrived at to obtain hardness values around 35 on Scleroscopic scale. Friction and wear properties of the respective brake pad materials have been measured on a dynamometer and their performance was evaluated.

  • PDF