• Title/Summary/Keyword: The time of department selection

Search Result 1,045, Processing Time 0.032 seconds

A Review of Cluster Analysis for Time Course Microarray Data (시간 경로 마이크로어레이 자료의 군집 분석에 관한 고찰)

  • Sohn In-Suk;Lee Jae-Won;Kim Seo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.13-32
    • /
    • 2006
  • Biologists are attempting to group genes based on the temporal pattern of gene expression levels. So far, a number of methods have been proposed for clustering microarray data. However, the results of clustering depends on the genes selection, therefore the gene selection with significant expression difference is also very important to cluster for microarray data. Thus, this paper present the results of broad comparative studies to time course microarray data by considering methods of gene selection, clustering and cluster validation.

IDENTIFICATION OF SIGNIFICANT CRITERIA FOR SELECTION OF CONSTRUCTION PROJECT MANAGERS IN IRAN

  • Abbas Rashidi;Fateme Jazebi;Mohamad Hassan Sebt
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1564-1569
    • /
    • 2009
  • Project managers play a key role in cost, time, and quality of a project. Selection of an appropriate project manager, therefore, is considered as one of the most important decisions in any construction project. It should be noted that most important decision makings are carried out by the project manager throughout the project. Traditionally, project manager selection in construction companies in Iran is through organizing an interview with candidates and selecting the most appropriate choice in accordance with the capabilities, potentials and individual specifications coupled with the requirements of the project. In the same direction, organizing interview on selection of appropriate candidate is usually carried out by senior managers of companies. Determination of the most important criteria for selection of project managers and also identification of significance coefficient of each criterion can highly help senior managers of companies to make sound selection decisions. In this paper, a numerical model has been considered for determination of significance of each criterion, details of which are submitted for selection of project manager in Iranian petrochemical, oil and gas sector companies. For this reason, all criteria- considered by senior managers of the companies under study- are first determined. Then, information obtained through 38 interviews, conducted by senior managers of the mentioned companies while selecting project manager, is analyzed. Significant coefficient of each criterion is calculated through the accumulated data using fuzzy curves method.

  • PDF

Construction of an Analysis System Using Digital Breeding Technology for the Selection of Capsicum annuum

  • Donghyun Jeon;Sehyun Choi;Yuna Kang;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.233-233
    • /
    • 2022
  • As the world's population grows and food needs diversify, the demand for horticultural crops for beneficial traits is increasing. In order to meet this demand, it is necessary to develop suitable cultivars and breeding methods accordingly. Breeding methods have changed over time. With the recent development of sequencing technology, the concept of genomic selection (GS) has emerged as large-scale genome information can be used. GS shows good predictive ability even for quantitative traits by using various markers, breaking away from the limitations of Marker Assisted Selection (MAS). Moreover, GS using machine learning (ML) and deep learning (DL) has been studied recently. In this study, we aim to build a system that selects phenotype-related markers using the genomic information of the pepper population and trains a genomic selection model to select individuals from the validation population. We plan to establish an optimal genome wide association analysis model by comparing and analyzing five models. Validation of molecular markers by applying linkage markers discovered through genome wide association analysis to breeding populations. Finally, we plan to establish an optimal genome selection model by comparing and analyzing 12 genome selection models. Then We will use the genome selection model of the learning group in the breeding group to verify the prediction accuracy and discover a prediction model.

  • PDF

QuLa: Queue and Latency-Aware Service Selection and Routing in Service-Centric Networking

  • Smet, Piet;Simoens, Pieter;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.306-320
    • /
    • 2015
  • Due to an explosive growth in services running in different datacenters, there is need for service selection and routing to deliver user requests to the best service instance. In current solutions, it is generally the client that must first select a datacenter to forward the request to before an internal load-balancer of the selected datacenter can select the optimal instance. An optimal selection requires knowledge of both network and server characteristics, making clients less suitable to make this decision. Information-Centric Networking (ICN) research solved a similar selection problem for static data retrieval by integrating content delivery as a native network feature. We address the selection problem for services by extending the ICN-principles for services. In this paper we present Queue and Latency, a network-driven service selection algorithm which maps user demand to service instances, taking into account both network and server metrics. To reduce the size of service router forwarding tables, we present a statistical method to approximate an optimal load distribution with minimized router state required. Simulation results show that our statistical routing approach approximates the average system response time of source-based routing with minimized state in forwarding tables.

Access Point Selection Algorithm for Densely Deployed IEEE 802.11 WLANs (IEEE 802.11 무선랜 환경에서의 AP 선택 알고리즘)

  • Kim, Gyul;Lee, SuKyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.707-713
    • /
    • 2016
  • In the IEEE 802.11 Wireless LAN environment, the common Access Point (AP) selection of the existing terminal is based on signal strength. However, the signal strength-based AP selection method does not ensure an optimal data rate. Recently, several AP selection methods to solve this problem have been suggested. However, when we select AP, these have a latency problem and don't consider dense environments of AP. In this paper, we confirm the problem of the conventional AP selection about the signal strength and the throughput through the actual measurement, and propose algorithm that selects AP by scoring link speed and wireless round trip time to compensate the problem. Furthermore, the proposed AP selection algorithm through the actual experiment proves the improved performance as compared with the existing methods.

Classification of High Dimensionality Data through Feature Selection Using Markov Blanket

  • Lee, Junghye;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.210-219
    • /
    • 2015
  • A classification task requires an exponentially growing amount of computation time and number of observations as the variable dimensionality increases. Thus, reducing the dimensionality of the data is essential when the number of observations is limited. Often, dimensionality reduction or feature selection leads to better classification performance than using the whole number of features. In this paper, we study the possibility of utilizing the Markov blanket discovery algorithm as a new feature selection method. The Markov blanket of a target variable is the minimal variable set for explaining the target variable on the basis of conditional independence of all the variables to be connected in a Bayesian network. We apply several Markov blanket discovery algorithms to some high-dimensional categorical and continuous data sets, and compare their classification performance with other feature selection methods using well-known classifiers.

Hepatitis C Stage Classification with hybridization of GA and Chi2 Feature Selection

  • Umar, Rukayya;Adeshina, Steve;Boukar, Moussa Mahamat
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.167-174
    • /
    • 2022
  • In metaheuristic algorithms such as Genetic Algorithm (GA), initial population has a significant impact as it affects the time such algorithm takes to obtain an optimal solution to the given problem. In addition, it may influence the quality of the solution obtained. In the machine learning field, feature selection is an important process to attaining a good performance model; Genetic algorithm has been utilized for this purpose by scientists. However, the characteristics of Genetic algorithm, namely random initial population generation from a vector of feature elements, may influence solution and execution time. In this paper, the use of a statistical algorithm has been introduced (Chi2) for feature relevant checks where p-values of conditional independence were considered. Features with low p-values were discarded and subject relevant subset of features to Genetic Algorithm. This is to gain a level of certainty of the fitness of features randomly selected. An ensembled-based learning model for Hepatitis has been developed for Hepatitis C stage classification. 1385 samples were used using Egyptian-dataset obtained from UCI repository. The comparative evaluation confirms decreased in execution time and an increase in model performance accuracy from 56% to 63%.

Hybrid Feature Selection Method Based on a Naïve Bayes Algorithm that Enhances the Learning Speed while Maintaining a Similar Error Rate in Cyber ISR

  • Shin, GyeongIl;Yooun, Hosang;Shin, DongIl;Shin, DongKyoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5685-5700
    • /
    • 2018
  • Cyber intelligence, surveillance, and reconnaissance (ISR) has become more important than traditional military ISR. An agent used in cyber ISR resides in an enemy's networks and continually collects valuable information. Thus, this agent should be able to determine what is, and is not, useful in a short amount of time. Moreover, the agent should maintain a classification rate that is high enough to select useful data from the enemy's network. Traditional feature selection algorithms cannot comply with these requirements. Consequently, in this paper, we propose an effective hybrid feature selection method derived from the filter and wrapper methods. We illustrate the design of the proposed model and the experimental results of the performance comparison between the proposed model and the existing model.

Two variations of cross-distance selection algorithm in hybrid sufficient dimension reduction

  • Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.179-189
    • /
    • 2023
  • Hybrid sufficient dimension reduction (SDR) methods to a weighted mean of kernel matrices of two different SDR methods by Ye and Weiss (2003) require heavy computation and time consumption due to bootstrapping. To avoid this, Park et al. (2022) recently develop the so-called cross-distance selection (CDS) algorithm. In this paper, two variations of the original CDS algorithm are proposed depending on how well and equally the covk-SAVE is treated in the selection procedure. In one variation, which is called the larger CDS algorithm, the covk-SAVE is equally and fairly utilized with the other two candiates of SIR-SAVE and covk-DR. But, for the final selection, a random selection should be necessary. On the other hand, SIR-SAVE and covk-DR are utilized with completely ruling covk-SAVE out, which is called the smaller CDS algorithm. Numerical studies confirm that the original CDS algorithm is better than or compete quite well to the two proposed variations. A real data example is presented to compare and interpret the decisions by the three CDS algorithms in practice.

The Convergence Relevance of The Department of Radiology students' Selection of Department, Clinical Practice, Curriculum of Department and The Selection Satisfaction of Major (방사선학과 학생들의 학과 선택, 임상실습, 학과 교육 과정과 전공 선택 만족도의 융복합형 관련성)

  • Choi, Seon-Wook;Jeon, Min-Cheol
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.121-129
    • /
    • 2018
  • This study is to analyze and evaluate the factors affecting the selection satisfaction of major of radiology students. After conducting a questionnaire survey on radiology students, we conducted t-test and multiple regression analysis. There was a significant difference between the preference and current factor among the selection of department. There were significant differences in clinical practice between practice environment, practice guidance, practice time and evaluation, satisfaction after practice, and employment. There were significant differences in curriculum framing, professor teaching and evaluation, support facilities, education system satisfaction, and curriculum satisfaction. As a result, it is necessary to develop system for increasing satisfaction with student's major selection and to improve the quality of education.