• Title/Summary/Keyword: The soil of a mound

Search Result 32, Processing Time 0.021 seconds

Construction Techniques of Earthen Fortifications in the Hanseong Period of Baekje Kingdom (백제 한성기 토성의 축조기술)

  • LEE, Hyeokhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.168-184
    • /
    • 2022
  • This paper examined the construction techniques of the earthen fortifications in the Hanseong Period of Baekje Kingdom, which has been researched most frequently among the Three Kingdoms. The construction processes of the Earthen Fortifications were reviewed and dividing into 'selection of location and construction of the base', 'construction of the wall', and 'finish, extension and repair'. The results show that various techniques were mobilized for building these earthen fortifications. Techniques which were adequate for the topography were utilized for reinforcing the base, and several other techniques were used for constructing the wall. In particular, techniques for wall construction may be clearly divided into those of the fill(盛土) and panchuk(版築) techniques. The fill method has been assumed since the 2000s to have been more efficient than the panchuk technique. This method never uses the structure of the panchuk technique and is characterized by a complex soil layer line, an alternate fill, use of 'earth mound(土堤)'/'clay clod(土塊)', and junctions of oval fill units. The fill method allows us to understand active technological sharing and application among the embankment structures in the period of the Three Kingdoms. The panchuk technique is used to construct a wall using a stamped earthen structure. This technique is divided into types B1 and B2 according to the height, scale, and extension method of the structure. Type B1 precedes B2, which was introduced in the late Hanseong Period. Staring with the Pungnap Earthen Fortification in Seoul, the panchuk technique seems to have spread throughout South Korea. The techniques of the fill and panchuk techniques coexisted at the time when they appeared, but panchuk earthen fortifications gradually dominated. Both techniques have completely different methods for the soil layers, and they have opposite orders of construction. Accordingly, it is assumed that both have different technical systems. The construction techniques of the earthen fortifications began from the Hanseong Period of Baekje Kingdom and were handed down and developed until the Woongjin-Sabi Periods. In the process, it seems that there existed active interactions with other nations. Recently, since studies of the earthen fortifications have been increasing mainly in the southern areas, it is expected that comparative analysis with neighboring countries will be done intensively.

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF