• Title/Summary/Keyword: The slope of condition factor(K)

Search Result 100, Processing Time 0.028 seconds

A study on the Stability Analysis of Slope in Unsaturated Soil Based on the Soil-Water characteristic curve (함수특성곡선을 고려한 불포화토 사면의 안정성 연구)

  • Yoon, Min-Ki;Kim, Jong-Sung;Kim, Hyo-Jung;Lee, Yeong-Saeng
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1029-1037
    • /
    • 2008
  • The finite element analysis of transient water flow through unsaturated soils was used to investigate effects of hydraulic characteristics, initial relative degree of saturation, methods to consider boundary condition, and rainfall intensity and duration on water pressure in slopes. The finite element method with shear strength reduction technique was used to evaluate the stability of slopes under rainfall. The slope-related disasters in Korea usually occur between July and September during the typhoon and localized heavy rain. This means that the rainfall is the most important factor that leads to the slope-related disasters. The slope-related disasters can happen at very short time and lead to big damage. To forecast the change of the heave of the groundwater in slope the Seep/w program was used.

  • PDF

Frictional Wave Energy Dissipation Factor on Uniform Sloping Beach (일정경사면에서의 파에너지 바닥마찰손실계수)

  • Yoo, Dong-Hoon;Eum, Ho-Sik;Jang, Moon-Yup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • Wave energy is dissipated mainly by friction on the seabed until the waves reach the surf zone. Many researchers have investigated the mechanism of wave friction and the bottom shear stress induced by wave motion at a certain point is now well estimated by introducing the wave friction factor related to the near bed velocity given by linear wave theory. The variation of wave energy or wave height over a long distance can be, however, estimated by an iteration process when the propagation of waves is strongly influenced by bed friction. In the present study simple semi-theoretical equation has been developed to compute the variation of wave height for the condition of wave propagation on a constant beach slope. The ratio of wave height is determined by the product of shoalng factor and wave height friction factor (frictional wave energy dissipation factor). The wave height estimated by the new equation is compared with the wave height estimated by the solution of numerical integration for the condition that the waves propagate on a constant slope.

A Comparative Study of Safe Factor of Slope according to Analysis Methods (해석 방법에 따른 비탈면 최소안전율 비교 연구)

  • Ryu, Hang Taek;Jang, Jeong Wook;Chung, Youn In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.5
    • /
    • pp.207-216
    • /
    • 2018
  • This research compared and analyzed safety ratio of slope with Talren97 and SoilWorks based on limit equilibrium analysis and Midas GTS based on finite element analysis. For the analysis variables, there are slope height, berm condition, soil parameter, groundwater level, slope inclination. All of slope stability analysis were performed by dividing into dry season and rainy season. As the result of the analysis of Talren97 and SoilWorks based on same theory, safety ratio of slope shows same value, so there was no difference between the programs. In comparison with limit equilibrium analysis, the result of finite element analysis showed somewhat high ratio of safety and it was higher by about 2.4% averagely. The difference between the result of limit equilibrium analysis and that of finite element analysis is in the range which can ignored in practical work.

A Case Study on the Collapsed Cut-Slope in $\bigcirc\bigcirc$ detour at JeonranamDo (전라남도 $\bigcirc\bigcirc$우회도로 붕괴절토사면 사례 연구)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jeong-Yeup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.966-973
    • /
    • 2008
  • In recent, the collapses of cut-slope is gradually increased due to the heavy rains accompanied by typhoon. Specially, many cut-slope failures and landslides was happened to Goheung, Yeosu, Suncheon region, Jeonranamdo in the middle of September 2007. The slope of investigation is width 20 m, height 22 m, and the circular failure was occurred. The parent rocks of the slope are pyroclastic rock, namely andesite, andesitic tuff et al. and the weathering grade is completely weathered to residual soils owing to rapid weathering process and has the existence of fault zone and mafic dyke. Also, lots of extension cracks are presented and the hydrologic condition is very deteriorated. As a result of the limit equilibrium analysis, the safety factor is 1.09(in dry season) and 0.64(in wet season). For the stabilization of the cut-slope, we decided to use the retaining wall, anchors and drainage apparatus.

  • PDF

Numerical Analysis and Comparison of the Influence of Safety Factor Variations in Slope Stability During Rainy Season (우기시 비탈면 안전율 변화 인자의 영향에 대한 수치해석적 비교연구)

  • Song, Pyung-Hyun;Baek, Yong;You, Byung-Ok;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.45-54
    • /
    • 2014
  • Many studies have been made on investigation, design, explanation and treatments etc. to minimize slope failure. However, the problem is that failures of cutting slope and natural slope due to Typhoon and localized heavy rainfall are still not reduced. It is difficult to treat the problem by only strengthening the design standard. And it is very necessary to carry out design and safety analysis under the most suitable conditions considering foundation and rainfall characteristics. In this study, variations of safety factor were discussed from different aspects to investigate the influence of different parameters of rainfall and analysis conditions. Rainfall and foundation conditions are supposed to be the most sensitive parameters to slope stability, and numerical analysis were performed by changing parameters of the two conditions. Rainfall behavior is based on the domestic statistical rainfall and foundation condition is selected as unsaturated soils. Study results show that, application of rainfall characteristics in different area and parameters of unsaturated soils are responding sensitively to variations of slope safety. Therefore, the input parameters should be fully examined when performing the practical design.

An Analytical Study on the Slope Safety Factor Considering Various Conditions (다양한 조건을 고려한 사면안전율에 관한 해석적 연구)

  • Park, Choon-Sik;Ahn, Sang-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.31-41
    • /
    • 2019
  • This paper demonstrates safety factor for effective planning at initial stage by utilizing results on changes of safety factor according to various conditions of slop and examines impacts of factors that affect slope safety factors as well. Firstly, it describes shear strength which satisfies minimum allowable safety factor: 1.20 depending on height and slope. As the height increases by 5.0 m, the safety factors decrease by 0.04 while it tends to consistently reduce by approximately 20%, 30% and 40% after height goes to 10.0 m. As slope reduces by about 0.3, the safety factors increases by 0.4, which shows the rate of safety factors on slope grows by about 10%, 20% and 30% on lowering slope. When cohesion goes up by 10.0 kPa the safety factors increases by around 40% respectably while the angle of internal friction grows by $5^{\circ}$, it increases by about 8%. The rate of safety factors is identified as $Fs=3.86H^{-0.59}$, Fs = 0.43 s, Fs = 0.04 c, $Fs=0.02{\phi}$ depending on height, slope and shear strength. The safety factor with rainfall infiltration tends to increase by 18% compared to the condition of saturated surface on earth.

Parametric Studies of Slope stability Analysis by 3D FEM Using Strength Reduction Method (강도감소법에 의한 3차원 사면안정해석에 대한 매개변수 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The two-dimensional (2D) analysis is widely used in geotechnical engineering for slope stability analysis assuming a plane-strain condition. It is implicitly assumed that the slip surface is infinitely wide, and thus three-dimensional (3D) end effects are negligible because of the infinite width of the slide mass. The majority of work on this subject suggests that the 2D factor of safety is conservative (i.e. lower than the 'true' 3D factor of safety). Recently, the 3D finite element method (FEM) became more attractive due to the progress of computational tools including the computer hardware and software. This paper presents the numerical analyses on rotational mode and translational mode slopes using the 2D and 3D FEM as well as 2D limit equilibrium methods (LEM). The results of the parametric study on the slope stability due to mesh size, dilatency angle, boundary conditions, stress history and model dimensions change are analysed. The analysis showed that the factor of safety in 3D analysis is always higher than that in the 2D analysis and the discrepancy of the slope width in W direction on the factor of safety is ignored if the roller type of W direction conditions is applied.

GENERATION OF AIRBORNE LIDAR INTENSITY IMAGE BY NORMALIZAING RANGE DIFFERENCES

  • Shin, Jung-Il;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.504-507
    • /
    • 2006
  • Airborn Lidar technology has been applied to diverse applications with the advantages of accurate 3D information. Further, Lidar intensity, backscattered signal power, can provid us additional information regarding target's characteristics. Lidar intensity varies by the target reflectance, moisture condition, range, and viewing geometry. This study purposes to generate normalized airborne LiDAR intensity image considering those influential factors such as reflectance, range and geometric/topographic factors (scan angle, ground height, aspect, slope, local incidence angle: LIA). Laser points from one flight line were extracted to simplify the geometric conditions. Laser intensities of sample plots, selected by using a set of reference data and ground survey, werethen statistically analyzed with independent variables. Target reflectance, range between sensor and target, and surface slope were main factors to influence the laser intensity. Intensity of laser points was initially normalized by removing range effect only. However, microsite topographic factor, such as slope angle, was not normalized due to difficulty of automatic calculation.

  • PDF

Ecological diagnosis of the Gongjicheon water system using length-weight relationship and condition factor(K) of population of the Zacco platypus (피라미 개체군의 length-weight relationship 및 condition factor(K)를 이용한 공지천수계의 생태적 진단)

  • Lee, Kwang-Yeol;Jang, Hara;Yun, Youngjin;Park, Seungchul;Kim, Joon Chul;Lee, Jaeyong;Choi, Jaeseok
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.137-149
    • /
    • 2014
  • The purpose of this study is to investigate the dynamics of the Zacco platypus population among streams in the Gongjicheon water system, Korea from December 2010 to October 2011. In this study, fish fauna was collected 27 Species belonged to 9 Families. The legal protection species, such as a natural monument and endangered species was not collected. Korean endemic species was collected 6 species including to Z. koreanus. The ratio of Korean endemic species was 22.6%, and it was lower than 51.3% that average of Korean endemic species in the Hangang water system. About these status, we considered that Gongjicheon water system had lost of the unique characteristics of the Hangang water system by the anthropogenic disturbances. The result of analysis to length-weight relationship and condition factor(K) of Z. platypus population in the Gongjicheon water system, the regression coefficient value(b) to indication of growth degree of the population was 3.04 and the slope of the condition factor(K) to indication of corpulency had positive value, respectively. These results seems to be that the Z. platypus population is maintained to a little unstably. In addition, the values of the degree of growth and corpulence were very low than the other natural streams in the Hangang water system, so it considered that the many artificially stress factors are occurred in this study area. These results are similar to Fish Assessment Index(FAI) in the assessment for health of aquatic ecosystem. Therefore, we are considered to require precise investigation and sustained monitoring for the restorations of stream ecosystem in the Gongjicheon water system.

Rail Transport Operation Control for Railway Embankment under rainfall (강우시 성토사면의 열차운전규제기준)

  • Kim, Hyun-Ki;Shin, Min-Ho;Choi, Chan-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.225-232
    • /
    • 2009
  • Infiltration of rainfall causes railway slopes to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze its stability by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. And suggested rainfall index is compared with the rail transport operation control which is used in KORAIL. It is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF