• Title/Summary/Keyword: The physical damage

Search Result 1,256, Processing Time 0.034 seconds

Development of Virtual Reality-based Visual Perception and Cognitive Rehabilitation Service

  • Song, YoHan;Kim, JinCheol;Lee, JeongA;Han, Shin;Lim, YoonGyung;Lee, HyunMin
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.2
    • /
    • pp.67-75
    • /
    • 2019
  • Purpose: Patients with brain damage suffer from limitations in performing the activities of daily living (ADL) because of their motor function and visual perception impairment. The aim of this study was to help improve the motor function and visual perception ability of patients with brain damage by providing them with virtual reality-based contents. The usability results of the patients and specialists group were also evaluated. Methods: The ADL contents consisted of living room, kitchen, veranda, and convenience store, similar to a real home environment, and these were organized by a rehabilitation specialist (e.g., neurologist, physiotherapist, and occupational therapist). The contents consisted of tasks, such as turning on the living room lights, organizing the drawers, organizing the kitchen, watering the plants on the veranda, and buying products at convenience stores. To evaluate the usability of the virtual reality-based visual cognitive rehabilitation service, general elderly subjects (n=11), stroke patients (n=7), stroke patients with visual impairment (n=4), and rehabilitation specialists (n=11) were selected. The questionnaires were distributed to the subjects who were using the service, and the subjective satisfaction of individual users was obtained as data. The data were analyzed using SPSS 21.0 software. The general characteristics of the users and the evaluation scores of the experts were analyzed using descriptive statistics. Results: The usability test result of this study showed that the mean value of the questionnaire related to content understanding and difficulty was high, between 4-5 points. Conclusion: The virtual reality rehabilitation service of this study is an efficient service that can improve the function, interest, and motivation of stroke patients.

Effects of intermittent ladder-climbing exercise training on mitochondrial biogenesis and endoplasmic reticulum stress of the cardiac muscle in obese middle-aged rats

  • Kim, Kijin;Ahn, Nayoung;Jung, Suryun;Park, Solee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.633-641
    • /
    • 2017
  • The aim of this study is to investigate the effects of intermittent ladder-climbing exercise training on mitochondrial biogenesis and ER stress of the cardiac muscle in high fat diet-induced obese middle-aged rats. We induced obesity over 6 weeks of period in 40 male Sprague-Dawley rats around 50 weeks old, and were randomly divided into four experimental groups: chow, HFD, exercise+HFD, and exercise+chow. The exercising groups underwent high-intensity intermittent training using a ladder-climbing and weight exercise 3 days/week for a total of 8 weeks. High-fat diet and concurrent exercise resulted in no significant reduction in body weight but caused a significant reduction in visceral fat weight (p<0.05). Expression of $PPAR{\delta}$ increased in the exercise groups and was significantly increased in the high-fat diet+exercise group (p<0.05). Among the ER stress-related proteins, the expression levels of p-PERK and CHOP, related to cardiac muscle damage, were significantly higher in the cardiac muscle of the high-fat diet group (p<0.05), and were significantly reduced by intermittent ladder-climbing exercise training (p<0.05). Specifically, this reduction was greater when the rats underwent exercise after switching back to the chow diet with a reduced caloric intake. Collectively, these results suggest that the combination of intermittent ladder-climbing exercise training and a reduced caloric intake can decrease the levels of ER stress-related proteins that contribute to cardiac muscle damage in obesity and aging. However, additional validation is required to understand the effects of these changes on mitochondrial biogenesis during exercise.

Injury and inflammation detection by the application of microcurrent through the skin

  • Hui, Timothy;Petrofsky, Jerrold
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • Objective: To determine the efficacy and reliability of measuring direct current microcurrent applied through the skin to determine injury in the underlying tissues. Design: Case control study. Methods: First, microcurrent was measured as decreased blood flow induced hypoxia in healthy subjects. Next, reliability was assessed by measuring over ten days with set variations in pressure and distance between the electrodes. Finally, measurements over sprained ankle were compared to measurements over comparable uninjured areas on the same injured subject. Results: For the blood flow test phase, microcurrent significantly decreased an average of 17% after 5 minutes (p<0.05), remained decreased for 30 seconds, and returned to non-occlusive levels after 2 minutes of normal circulation. The results indicate that the microcurrent decrease was not due to blood flow, and most likely from hypoxic cellular damage. For the reliability phase, the coefficients of variation averaged 10.3% for the shoulder, 14.8% for the low back, and 29.1% for the knee. Changing distance 2.5 cm between the electrodes resulted in insignificant changes. Changes in pressure had some significant effect after an increase in force of 2.6 N, affirming the need for consistent pressure for measurement. For the injury test phase, a significant 69% decrease occurred comparing injured areas to the same area on the uninjured side, and a significant 74% occurred comparing injured and non-injured areas on the same limb. Conclusions: Microcurrent through the skin shows promise as an objective method of assessing a soft tissue injury by detecting damage likely due to hypoxia.

  • PDF

PLASMA DIAGNOSIS OF FANING TARGETS SPUTTERING SYSTEM FOR DEPOSITION OF BA FERRITE FILMS IN Ar, Xe AND $O_2$ GAS MIXTURE

  • Matsushita, Nobuhiro;Noma, Kenji;Nakagawa, Shigeki;Naoe, Masahiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.834-838
    • /
    • 1996
  • The diagnosis of the plasma in the facing targets sputtering system was performed in mixture gas of Ar 0.18-0.0 Pa, Xe 0.0-0.18 Pa and $O_2$ 0.02 Pa by using Langmiur's probe and the effect of plasma-damage to surface smoothness and magnetic characteristics of Ba ferrite films was clarified. The electron density $N_e$ and the electron temperature $T_e$ were evaluated at the center of the plasma and at the neighborhood of the anode ring. $T_e$ decreased and $N_e$ increased with increase of $P_{Xe}$ at the center of plasma. For the measurement at the neighborhood of the anode ring, $T_e$ was almost constant and $N_e$ took the minimum value at $P_{Xe}$ of 0.1 Pa, where Ba ferrite films with excellent c-axis orientation and magnetic characteristics were obtained. It was suggested that the restriction of the bombardment of recoiled particles as well as the suppress of plasma-damage were effective for obtaining good surface smoothness and excellent magnetic characteristics and it was useful for decreasing the crystallization temperature of Ba ferrite films.

  • PDF

Ipsilateral Motor Deficit in Patients with Unilateral Brain Damage (편측 뇌손상 환자의 동측 운동 결함에 대한 고찰)

  • Kim, Chung-Sun;Kim, Kyung;Kwon, Yong-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2006
  • Recently, several investigations revealed that after unilateral brain damage, movement abnormalities were exposed on the ipsilateral side as well as the upper extremity contralateral to the damaged hemisphere. Even the motor abilities had significantly recovered from ipsilateral motor deficits on not only simple sensoriomotor function, also clinical assessments since subacute stage, although could not completely returned. Such motor deficits were detected in a diversity of motor tasks depending on the interhemispheric specialization, further in clinical evaluation and a daily of activities. In the clinical features, muscular weakness, sensory loss and impaired manual dexterity were observed. In a laboratory experiment, there were increasing evidences that the kinematic processing deficits was founded in various-specific motor tasks, which ranged from simple basic element to complex tasks, such as tapping task, step-tracking, goal directional aiming task, and iso(and non-)directional interlimb coordination. In the point of view, the manifest understanding in related to ipsilateral deficits provide the clinicians with an important information for scientific management about brain injured patient's prognosis and therapeutic guidelines.

  • PDF

Effect of Landing Heights on Muscle Activities and Ground Reaction Force during Drop Landing in Healthy Adults (정상 성인에서 착지 시 착지 높이가 근활성도와 지면반발력에 미치는 영향)

  • Chang, Jong-Sung;Lee, Mi-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.2
    • /
    • pp.145-151
    • /
    • 2011
  • Purpose: The study was designed to investigate the effects of landing heights on muscle activities and ground reaction force during drop landing. Methods: Sixteen healthy adults were recruited along with their written informed consent. They performed a drop-landing task at the height of 20, 40, and 60cm. They completed three trials in each condition and biomechanical changes were measured. The data collected by each way of landing task and analyzed by One-way ANOVA. Ground reaction forces were measured by force flate, muscle activities measured by MP150 system. Results: There were significant differences in ground reaction forces, and significant increases in muscle activities of tibialis anterior, medial gastrocnemius and biceps femoris with landing heights. Conclusion: These findings revealed that heights of landing increases risk factors of body damage because of biomechanical mechanism and future studies should focus on prevention from damage of external conditions.

A study on the damage process of fatigue crack growth using the stochastic model (확률적모델을 이용한 피로균열성장의 손상과정에 관한 연구)

  • Lee, Won Suk;Cho, Kyu Seoung;Lee, Hyun Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.130-138
    • /
    • 1996
  • In general, the scattler is observed in fatigue test data due to the nonhomogeneity of a material. Consequently. It is necessary to use the statistical method to describe the fatigue crack growth process precisely. Bogdanoff and Kozin suggested and developed the B-model which is the probabilistic models of cumulative damage using the Markov process in order to describe the damage process. But the B-model uses only constant probability ratior(r), so it is not consistent with the actual damage process. In this study, the r-decreasing model using a monotonic decreasing function is introduced to improve the B-model. To verify the model, thest data of fatigue crack growth of A12024-T351 and A17075-T651 are used. Compared with the empirical distribution of test data, the distribution from the r-decreasing model is satisfactory and damage process is well described from the probabilistic and physical viewpoint.

  • PDF

Magnetic Resonance Imaging as a Biomarker for Duchenne Muscular Dystrophy

  • Lim, Woo-taek
    • Physical Therapy Korea
    • /
    • v.22 no.3
    • /
    • pp.98-105
    • /
    • 2015
  • Muscular dystrophy is a hereditary musculoskeletal disorder caused by a mutation in the dystrophin gene. Duchenne muscular dystrophy (DMD) is one of the most common, and progresses relatively faster than other muscular dystrophies. It is characterized by progressive myofiber degeneration, muscle weakness and ultimately ambulatory loss. Since it is an X-linked recessive inheritance, DMD is mostly expressed in males and rarely expressed or less severe in females. The most effective measurement tool for DMD is magnetic resonance imaging (MRI), which allows non-invasive examination of longitudinal measurement. It can detect progressive decline of skeletal muscle size by measuring a maximal cross-sectional area of skeletal muscle. Additionally, other techniques in MRI, like $T_2$-weighted imaging, assess muscle damage, including inflammation, by detecting changes in $T_2$ relaxation time. Current MRI techniques even allow quantification of metabolic differences between affected and non-affected muscles in DMD. There is no current cure, but physical therapist can improve their quality of life by maintaining muscle strength and function, especially if treatment (and other forms of medical intervention) begins in the early stages of the disease.

The effects of physical decontamination methods on zirconia implant surfaces: a systematic review

  • Tan, Nathan Chiang Ping;Khan, Ahsen;Antunes, Elsa;Miller, Catherine M;Sharma, Dileep
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.298-315
    • /
    • 2021
  • Purpose: Peri-implantitis therapy and implant maintenance are fundamental practices to enhance the longevity of zirconia implants. However, the use of physical decontamination methods, including hand instruments, polishing devices, ultrasonic scalers, and laser systems, might damage the implant surfaces. The aim of this systematic review was to evaluate the effects of physical decontamination methods on zirconia implant surfaces. Methods: A systematic search was conducted using 5 electronic databases: Ovid MEDLINE, PubMed, Scopus, Web of Science, and Cochrane. Hand searching of the OpenGrey database, reference lists, and 6 selected dental journals was also performed to identify relevant studies satisfying the eligibility criteria. Results: Overall, 1049 unique studies were identified, of which 11 studies were deemed suitable for final review. Air-abrasive devices with glycine powder, prophylaxis cups, and ultrasonic scalers with non-metal tips were found to cause minimal to no damage to implantgrade zirconia surfaces. However, hand instruments and ultrasonic scalers with metal tips have the potential to cause major damage to zirconia surfaces. In terms of laser systems, diode lasers appear to be the most promising, as no surface alterations were reported following their use. Conclusion: Air-abrasive devices and prophylaxis cups are safe for zirconia implant decontamination due to preservation of the implant surface integrity. In contrast, hand instruments and ultrasonic scalers with metal tips should be used with caution. Recommendations for the use of laser systems could not be fully established due to significant heterogeneity among included studies, but diode lasers may be the best-suited system. Further research-specifically, randomised controlled trials-would further confirm the effects of physical decontamination methods in a clinical setting.

The Sinkage Speed by Ship's under Water Damage (선저파공이 침수속도에 미치는 영향)

  • 박석주;이동섭;박성현
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.417-422
    • /
    • 2001
  • Every ship might be exposed to collision, grounding and/or various accidents. They may make some underwater holes on the hull. An underwater damage would cause her loss of buoyancy, trim, and inclination. Although a ship has some provisions against these accidents, if the circumstance is serious, she would be sunk or upsetted. Because of varieties of type of accidents, one could not prepare all of them. Many subdivision could prevent them, but it is difficult to realize it due to rising costs. This paper deals with physical phenomena of sinkage and an application on box type ship, and some results are earned as follows; 1. sinkage speed up to the level of the damage hole is increased proportionally, and is decreased proportionally after filling the level. 2. the curve of draft shows cup type of second order polynomial up to the damage hole level, and shows cap type of second order polynomial after filling the level. 3. if damage occurs beneath half of the draft, changes of head and displacement, and sinking speed follow almost straight lines. 4. by careful observation, sinkage speed could be predicted.

  • PDF