• 제목/요약/키워드: The partial extraction system

검색결과 60건 처리시간 0.024초

부분방전 패턴의 인식 (Recognition of Partial Discharge Patterns)

  • 이준호;이진우
    • 조명전기설비학회논문지
    • /
    • 제14권2호
    • /
    • pp.8-17
    • /
    • 2000
  • 본 연구에서는 부분방전의 인식을 위한 두가지 접근법을 제안하였다. 첫 번째로는 백프로파게이션 알고리즘을 적용한 신경회로망이구 두 번째로는 두 연산자 백터간의 사이각 계산이다. 부분방전신호는 IEC(b), 침대평판 및 CIGRE method II 등 3가지 전극계로부터 각각 검출되었다. 신경회로망과 벡터의 사이각을 이용한 방법 모두 이리 학습된 패턴에 대해서는 양호한 인식능력을 보였다. 그려고 사용되는 연산자의 수가 미학습패턴의 인식능력에 큰 영향올 미쳤다.

  • PDF

Flashover Prediction of Polymeric Insulators Using PD Signal Time-Frequency Analysis and BPA Neural Network Technique

  • Narayanan, V. Jayaprakash;Karthik, B.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1375-1384
    • /
    • 2014
  • Flashover of power transmission line insulators is a major threat to the reliable operation of power system. This paper deals with the flashover prediction of polymeric insulators used in power transmission line applications using the novel condition monitoring technique developed by PD signal time-frequency map and neural network technique. Laboratory experiments on polymeric insulators were carried out as per IEC 60507 under AC voltage, at different humidity and contamination levels using NaCl as a contaminant. Partial discharge signals were acquired using advanced ultra wide band detection system. Salient features from the Time-Frequency map and PRPD pattern at different pollution levels were extracted. The flashover prediction of polymeric insulators was automated using artificial neural network (ANN) with back propagation algorithm (BPA). From the results, it can be speculated that PD signal feature extraction along with back propagation classification is a well suited technique to predict flashover of polymeric insulators.

카오스 특징 추출에 의한 용접 결함의 초음파 형상 인식 (Ultrasonic Pattern Recognition of Welding Defects Using the Chaotic Feature Extraction)

  • 이원;윤인식;이병채
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.167-174
    • /
    • 1998
  • The ultrasonic test is recognized for its significance as a non-destructive testing method to detect volume defects such as porosity and incomplete penetration which reduce strength in the weld zone. This paper illustrates the defect detection in the weld zone of ferritic carbon steel using ultrasonic wave and the evaluation of pattern recognition by chaotic feature extraction using time series signal of detected defects as data. Shown in the time series data were that the time delay was 4 and the embedding dimension was 6 which indicate the geometric dimension of the subject system and the extent of information correlation. Based on fractal dimension and lyapunov exponent in quantitative chaotic feature extraction, feature value of 2.15, 0.47 is presented for porosity and 2.24, 0.51 for incomplete penetration The precision rate of the pattern recognition is enhanced with these values on the total waveform of defect signal in the weld zone. Therefore, we think that the ultrasonic pattern recognition method of weld zone defects of ferritic carbon steel by ultrasonic-chaotic feature extraction proposed in this paper can boost precision rate further than the existing method applying only partial waveform.

  • PDF

Development of an Optimized Feature Extraction Algorithm for Throat Signal Analysis

  • Jung, Young-Giu;Han, Mun-Sung;Lee, Sang-Jo
    • ETRI Journal
    • /
    • 제29권3호
    • /
    • pp.292-299
    • /
    • 2007
  • In this paper, we present a speech recognition system using a throat microphone. The use of this kind of microphone minimizes the impact of environmental noise. Due to the absence of high frequencies and the partial loss of formant frequencies, previous systems using throat microphones have shown a lower recognition rate than systems which use standard microphones. To develop a high performance automatic speech recognition (ASR) system using only a throat microphone, we propose two methods. First, based on Korean phonological feature theory and a detailed throat signal analysis, we show that it is possible to develop an ASR system using only a throat microphone, and propose conditions of the feature extraction algorithm. Second, we optimize the zero-crossing with peak amplitude (ZCPA) algorithm to guarantee the high performance of the ASR system using only a throat microphone. For ZCPA optimization, we propose an intensification of the formant frequencies and a selection of cochlear filters. Experimental results show that this system yields a performance improvement of about 4% and a reduction in time complexity of 25% when compared to the performance of a standard ZCPA algorithm on throat microphone signals.

  • PDF

Electrical Parameter Extraction of High Performance Package Using PEEC Method

  • Pu, Bo;Lee, Jung-Sang;Nah, Wan-Soo
    • Journal of electromagnetic engineering and science
    • /
    • 제11권1호
    • /
    • pp.62-69
    • /
    • 2011
  • This paper proposes a novel electrical characterization approach for a high-performance package system using an improved Partial Element Equivalent Circuit (PEEC). As the effect of interconnects becomes a pivotal factor for the performance of high-speed electronic systems, there is a great demand for an accurate equivalent model for interconnects. In particular, an equivalent model of interconnects is established in this paper for the Fine-Pitch Ball Grid Array (FBGA) package using the improved PEEC method. Based on the equivalent model, electrical characteristics are analyzed; furthermore, these are verified through the measurement results of a Vector Network Analyzer (VNA).

A network-adaptive SVC Streaming Architecture

  • ;임정연;이범식;김문철;함상진;김병선;이근식;박근수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2006년도 학술대회
    • /
    • pp.257-260
    • /
    • 2006
  • In Video streaming environment, we must consider terminal and network characteristics, such as display resolution, frame rate, computational resource, network bandwidth, etc. The JVT (Joint Video Team) by ISO/IEC MPEG and ITU-TVCEG is currently standardizing Scalable Video Coding (SVC). This can represent video bitstreams in different sealable layers for flexible adaptation to terminal and network characteristics. This characteristic is very useful in video streaming applications. One fully scalable video can be extracted with specific target spatial resolution, temporal frame rate and quality level to match the requirements of terminals and networks. Besides, the extraction process is fast and consumes little computational resource, so it is possible to extract the partial video bitstream online to accommodate with changing network conditions etc. With all the advantages of SVC, we design and implement a network-adaptive SVC streaming system with an SVC extractor and a streamer to extract appropriate amounts of bitstreams to meet the required target bitrates and spatial resolutions. The proposed SVC extraction is designed to allow for flexible switching from layer to layer in SVC bitstreams online to cope with the change in network bandwidth. The extraction is made in every GOP unit. We present the implementation of our SVC streaming system with experimental results.

  • PDF

A new lightweight network based on MobileNetV3

  • Zhao, Liquan;Wang, Leilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.1-15
    • /
    • 2022
  • The MobileNetV3 is specially designed for mobile devices with limited memory and computing power. To reduce the network parameters and improve the network inference speed, a new lightweight network is proposed based on MobileNetV3. Firstly, to reduce the computation of residual blocks, a partial residual structure is designed by dividing the input feature maps into two parts. The designed partial residual structure is used to replace the residual block in MobileNetV3. Secondly, a dual-path feature extraction structure is designed to further reduce the computation of MobileNetV3. Different convolution kernel sizes are used in the two paths to extract feature maps with different sizes. Besides, a transition layer is also designed for fusing features to reduce the influence of the new structure on accuracy. The CIFAR-100 dataset and Image Net dataset are used to test the performance of the proposed partial residual structure. The ResNet based on the proposed partial residual structure has smaller parameters and FLOPs than the original ResNet. The performance of improved MobileNetV3 is tested on CIFAR-10, CIFAR-100 and ImageNet image classification task dataset. Comparing MobileNetV3, GhostNet and MobileNetV2, the improved MobileNetV3 has smaller parameters and FLOPs. Besides, the improved MobileNetV3 is also tested on CPU and Raspberry Pi. It is faster than other networks

컴퓨터 비젼을 이용한 컨테이너 자세 측정 (The Container Pose Measurement Using Computer Vision)

  • 주기세
    • 한국정보통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.702-707
    • /
    • 2004
  • 본 논문은 CCD 카메라와 거리 센서를 사용하여 컨테이너의 자세 측정에 관하여 연구하였다. 특히 특징점을 추출하고 영상의 잡음을 줄이는 방법에 대하여 중점적으로 기술하였다. 가우시안 및 랜덤 노이즈를 제거하기 위하여 Euler-Lagrange 방정식을 소개하였으며 PDE(Partial Differential Equation)를 기초로 한 Euler-Lagrange 방정식을 풀기 위하여 ADI(Alternating Direction Implicit)방법을 적용하였다. 그리고 스프레더와 컨테이너의 특징점을 추출하기 위해서 기존의 황금 분할법과 이분 분할법을 이용한 방법은 지역적 최대 및 최소 값의 경우 정확한 해를 구할 수 없어서 k차 곡률 알고리즘을 이용하였다. 제안된 알고리즘은 영상의 전처리과정에서 잡음제거에 효과적이며 카메라와 거리센서를 이용한 제안 시스템은 기존시스템의 구조적 변경 없이 사용가능하기 때문에 비용이 저렴한 장점이 있다.

MATHEMATICAL IMAGE PROCESSING FOR AUTOMATIC NUMBER PLATE RECOGNITION SYSTEM

  • Kim, Sun-Hee;Oh, Seung-Mi;Kang, Myung-Joo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권1호
    • /
    • pp.57-66
    • /
    • 2010
  • In this paper, we develop the Automatic Number Plate Recognition (ANPR) System. ANPR is generally composed of the following four steps: i) The acquisition of the image; ii) The extraction of the region of the number plate; iii) The partition of the number and iv) The recognition. The second and third steps incorporate image processing technique. We propose to resolve this by using Partial Differential Equation(PDE) based segmentation method. This method is computationally efficient and robust. Results indicate that our methods are capable to recognize the plate number on difficult situations.