• Title/Summary/Keyword: The critical elastic buckling load

Search Result 97, Processing Time 0.025 seconds

Elastic stability of functionally graded graphene reinforced porous nanocomposite beams using two variables shear deformation

  • Fortas, Lahcene;Messai, Abderraouf;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.31-54
    • /
    • 2022
  • This paper is concerned with the buckling behavior of functionally graded graphene reinforced porous nanocomposite beams based on the finite element method (FEM) using two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element, and then the critical buckling load is calculated with different porosity distributions and GPL dispersion patterns. After a convergence and validation study to verify the accuracy of the present model, a comprehensive parametric study is carried out, with a particular focus on the effects of weight fraction, distribution pattern of GPL reinforcements on the Buckling behavior of the nanocomposite beam. The effects of various structural parameters such as the dispersion patterns for the graphene and porosity, thickness ratio, boundary conditions, and nonlocal and strain gradient parameters are brought out. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams, and the results allows to identify the most effective way to achieve improved buckling behavior of the porous nanocomposite beam.

Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials

  • Jamali, M.;Shojaee, T.;Kolahchi, R.;Mohammadi, B.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.691-712
    • /
    • 2016
  • In this editorial, buckling analytical investigation of the nanocomposite plate with square cut out reinforced by carbon nanotubes (CNTs) surrounded by Pasternak foundation is considered. The plate is presumed has square cut out in center and resting on Pasternak foundation. CNTs are used as amplifier in plate for diverse distribution, such as uniform distribution (UD) and three patterns of functionally graded (FG) distribution types of CNTs (FG-X, FG-A and FG-O). Moreover, the effective mechanical properties of nanocomposite plate are calculated from the rule of mixture. Domain decomposition method and orthogonal polynomials are applied in order to define the shape function of nanocomposite plate with square cut out. Finally, Rayleigh-Ritz energy method is used to obtain critical buckling load of system. A detailed parametric study is conducted to explicit the effects of the dimensions of plate, length of square cut out, different distribution of CNTs, elastic medium and volume fraction of CNTs. It is found from results that increase the dimensions of plate and length of square cut out have negative impact on buckling behavior of system but considering CNTs in plate has positive influence.

Experimental and numerical studies on the behaviour of corroded cold-formed steel columns

  • Nie, Biao;Xu, Shanhua;Zhang, Haijiang;Zhang, Zongxing
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.611-625
    • /
    • 2020
  • Experimental investigation and finite element analysis of corroded cold-formed steel (CFS) columns are presented. 11 tensile coupon specimens and 6 stub columns of corroded CFS that had a channel section of C160x60x20 were subjected to monotonic tensile tests and axial compression tests, respectively. The degradation laws of the mechanical properties of the tensile coupon specimens and stub columns were analysed. An appropriate finite element model for the corroded CFS columns was proposed and the influence of local corrosion on the stability performance of the columns was studied by finite element analysis. Finally, the axial capacity of the experimental results was compared with the predictions obtained from the existing design specifications. The results indicated that with an increasing average thickness loss ratio, the ultimate strength, elastic modulus and yield strength decreased for the tensile coupon specimens. Local buckling deformation was not noticeable until the load reached about 90% of the ultimate load for the non-corroded columns, while local buckling deformation was observed when the load was only 40% of the ultimate load for the corroded columns. The maximum reduction of the ultimate load and critical buckling load was 57% and 81.7%, respectively, compared to those values for the non-corroded columns. The ultimate load of the columns with web thickness reduced by 2 mm was 53% lower than that of the non-corroded columns, which indicates that web corrosion most significantly affects the bearing capacity of the columns with localized corrosion. The results predicted using the design specifications of MOHURD were more accurate than those predicted using the design specifications of AISI.

Braced, partially braced and unbraced columns: Complete set of classical stability equations

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.365-381
    • /
    • 1996
  • Stability equations that evaluate the elastic critical axial load of columns in any type of construction with sidesway uninhibited, partially inhibited, and totally inhibited are derived in a classical manner. These equations can be applied to the stability of frames (unbraced, partially braced, and totally braced) with rigid, semirigid, and simple connections. The complete column classification and the corresponding three stability equations overcome the limitations and paradoxes of the well known alignment charts for braced and unbraced columns and frames. Simple criteria are presented that define the concept of partially braced columns and frames, as well as the minimum lateral bracing required by columns and frames to achieve non-sway buckling mode. Various examples are presented in detail that demonstrate the effectiveness and accuracy of the complete set of stability equations.

Bending and buckling of a rectangular porous plate

  • Magnucki, K.;Malinowski, M.;Kasprzak, J.
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.319-333
    • /
    • 2006
  • A rectangular plate made of a porous material is the subject of the work. Its mechanical properties vary continuously on the thickness of a plate. A mathematical model of this plate, which bases on nonlinear displacement functions taking into account shearing deformations, is presented. The assumed displacement field, linear geometrical and physical relationships permit to describe the total potential energy of a plate. Using the principle of stationarity of the total potential energy the set of five equilibrium equations for transversely and in-plane loaded plates is obtained. The derived equations are used for solving a problem of a bending simply supported plate loaded with transverse pressure. Moreover, the critical load of a bi-axially in-plane compressed plate is found. In both cases influence of parameters on obtained solutions such as a porosity coefficient or thickness ratio is analysed. In order to compare analytical results a finite element model of a porous plate is built using system ANSYS. Obtained numerical results are in agreement with analytical ones.

Curved finite strip and experimental study of thin stiffened composite cylindrical shells under axial compression

  • Mojtaba Rafiee;Hossein Amoushahi;Mehrdad Hejazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.181-197
    • /
    • 2024
  • A numerical method is presented in this paper, for buckling analysis of thin arbitrary stiffened composite cylindrical shells under axial compression. The stiffeners can be placed inside and outside of the shell. The shell and stiffeners are operated as discrete elements, and their interactions are taking place through the compatibility conditions along their intersecting lines. The governing equations of motion are obtained based on Koiter's theory and solved by utilizing the principle of the minimum potential energy. Then, the buckling load coefficient and the critical buckling load are computed by solving characteristic equations. In this formulation, the elastic and geometric stiffness matrices of a single curved strip of the shell and stiffeners can be located anywhere within the shell element and in any direction are provided. Moreover, five stiffened composite shell specimens are made and tested under axial compression loading. The reliability of the presented method is validated by comparing its numerical results with those of commercial software, experiments, and other published numerical results. In addition, by using the ANSYS code, a 3-D finite element model that takes the exact geometric arrangement and the properties of the stiffeners and the shell into consideration is built. Finally, the effects of Poisson's ratio, shell length-to-radius ratio, shell thickness, cross-sectional area, angle, eccentricity, torsional stiffness, numbers and geometric configuration of stiffeners on the buckling of stiffened composite shells with various end conditions are computed. The results gained can be used as a meaningful benchmark for researchers to validate their analytical and numerical methods.

Stability and minimum bracing for stepped columns with semirigid connections: Classical elastic approach

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.415-431
    • /
    • 1997
  • Stability equations that evaluate the elastic critical axial load of stepped columns under extreme and intermediate concentrated axial loads in any type of construction with sidesway totally inhibited, partially inhibited and uninhibited are derived in a classical manner. These equations can be utilized in the stability analysis of framed structures (totally braced, partially braced, and unbraced) with stepped columns with rigid, semirigid, and simple connetions. The proposed column classification and the corresponding stability equations overcome the limitations of current methods which are based on a classification of braced and unbraced columns. The proposed stability equations include the effects of: 1) semirigid connections; 2) step variation in the column cross section at the point of application of the intermediate axial load; and 3) lateral and rotational restraints at the intermediate connection and at the column ends. The proposed method consists in determining the eigenvalue of a $2{\times}2$ matrix for a braced column at the two ends and of a $3{\times}3$ matrix for a partially braced or unbraced column. The stability analysis can be carried out directly with the help of a pocket calculator. The proposed method is general and can be extended to multi-stepped columns. Various examples are include to demonstrate the effectiveness of the proposed method and to verify that the calculated results are exact. Definite minimum bracing criteria for single stepped columns is also presented.

Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device (T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향)

  • ;;;C. Soutis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

An Experimental Study on the Behavior of Aluminum-Honeycomb Sandwich Panels (알루미늄하니콤 샌드위치판의 거동에 관한 실험적 연구)

  • Lee, Yong W.;Chun, Min S.;Paik, Jeom K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.106-123
    • /
    • 1996
  • This paper experimentally investigates the characteristics of Al-honeycomb sandwich panels which are considered as a promising primary strength member of weight critical large structures. Some tests on the aluminum honeycomb panels subject to 3-point bending or uniaxial compression or crushing load are carried out. Based on the test results, linear elastic response, buckling/ultimate strength and crushing/energy absorption capacity are discussed. Some guidelines for design of aluminum honeycomb panels are given.

  • PDF