• Title/Summary/Keyword: The West Busan Logistics Park

Search Result 4, Processing Time 0.016 seconds

A Study on the Functional Relation between the West Busan New Port Distri-Park and the West Busan Logistics Park for Efficient Management of the Container Cargo Traffic Volume of the Busan New Port (부산신항 컨테이너 물동량의 효율적인 처리를 위한 부산신항복합물류단지와 서부산유통단지의 기능적 연계성에 관한 연구)

  • 이경오
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.27-35
    • /
    • 2001
  • In order to deal with the increase of container cargo traffic volume more effectively, the ministry of maritime affairs & fisheries has a long-term plan to develop Gaduk Island. According to the plan, the New Port will handle 4,600,00TEUs annually. The completion of the project will enable the port of Busan to perform as a hub port in the Asia Pacific era of the year 2000 with sufficient port facilities, and this will lead to a new era of oceanic Korea. With the advent of the Pacific Rim Era of the year 2000, Busan metropolis has set a strategic development plan to establish the area as the center of logistics in the noreast Asian region as well as to become the stronghold of economic activity in Korea's southeast region. To this end, industries that will open the doors to a marine era and a new industrial complex focused on logistics are planned in the West Busan area where Gimhae International Airport and the Busan New Port meet. This paper aims to find out the functional relation and complement between the Busan New Port Distri-Park handing container cargo traffic volume and the West Busan Logistics Pa가 handling an air cargo and railroad goods. Especially, paper aims to suggest the West Busan Logistics Park as the efficient management of the container cargo traffic volume due to the Development Plan of the Busan New Port.

  • PDF

A Study on the Establishment of Optimal Transportation Networks in Busan New Port (부산항 신항 최적의 교통망 수립에 관한 연구)

  • Park, Ho-Kyo;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.125-132
    • /
    • 2017
  • The development project of Busan New Port aims to be Logistics Hub Port but there are too many things to deal with ; enlargement of harbour, interport competition, modernization of harbour loading equipment and so on. At present, 23 berths of North and South container quay are in operation and 22 berths will be constructed on west and south-side by 2020. Namely, Busan New Port will operate 45 berths in 2020. When it comes to port distripark, a large-scale of Port distripark project is underway, such as Ung-Dong district 1,2 phase, West container 1,2phase, North distripark and so on. This study is to deduce traffic system problem of Busan New Port which is caused by the development project through predicting traffic need considering the development project. According to study, there are three main problems of traffic system : 1. traffic congestion caused on main crossroad, connecting second harbour back road. 2. It has been predicted that South-North road and traffic capacity of New Port road would lack compared to traffic volume-to-be-increased. Moreover, the detour volume of traffic is caused because New Port's 1st avenue and route 2 were not connected directly. Thus, this study suggests three kinds of improvement plan for smoother traffic flow. 1st. Operate roundabout on major intersection, for example, second harbour back road, west container wharf's subway corridors(South to North), and permit only right turn on sub-intersection. 2nd. Extend New Port road(North container's port road) by utilizing side walk and median. 3rd. Install exit ramp which utilizes Route 2 connecting New Port's 1st avenue and local road 1042. The method we used to analyze the effect of improvement is Vissim of Mircro Simulation Package.

Simulation Model Development for Configuring a Optimal Port Gate System (최적 항만 게이트 시스템 구성을 위한 시뮬레이션 모델 개발)

  • Park, Sang-Kook;Kim, Young-Du
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.421-430
    • /
    • 2016
  • In this study, a gate simulation model was developed to reduce the truck waiting time for trucking companies servicing container terminals. To verify the developed model, 4 weeks of truck gate-in/gate-out data was collected in December 2014 at the Port of Busan New Port. Also, the existing gate system was compared to the proposed gate system using the developed simulation model. The result showed that based on East gate-in, a maximum number of 50 waiting trucks with a maximum waiting time of 120 minutes. With the proposed system the maximum number of waiting trucks was 10 with a maximum waiting time of 5.3 minutes. Based on West gate-in, the maximum number of waiting trucks was 17 and the maximum waiting time was 34 minutes in the existing gate system. With the proposed system the maximum number of waiting trucks was 10 with a maximum waiting time of 5.3 minutes. Based on West gate-out, the maximum number of waiting trucks was 11 with a maximum waiting time of 5.5 minutes. With the proposed system the maximum number of waiting trucks was 9 with a maximum waiting time of 4.4 minutes. This developed model shows how many waiting trucks there are, depending on the gate-in/gate-out time of each truck. This system can be used to find optimal gate system operating standards by assuming and adjusting the gate-in/gate-out time of each truck in different situations.

Bathymetric changes off the sea south of Jinwoo-do Island in the Nakdong River estuary (낙동강 하구역 진우도 남측 해역의 해저지형 변화)

  • Park, Bong-woon;Kim, Sung-bo;Kim, Jae-joong;Kim, Ki-cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • Bathymetric changes were studied in the southern sea off the Jinwoo-do Island, which is one of the deltaic barrier islands surrounding the Nakddong river estuary. In this study, 16 bathymetry data sets were obtained from June 2006 to April 2015. Two narrow channels, the one lying between Jinwoo-do and Shinja-do, and the other one lying between Nulcha-do and Jinwoo-do extended into the eastern and western parts of the study area, respectively. The eastern extension of the channel contained a passage of mixed estuarine waters of seawater and river water discharged from the Nakdong river barrier and the west Nakdong River. The western channel connected the Nakdong River estuary with the Busan New Port via a connecting pier. Total volumetric changes of sediments in study area and discharge flow of the Nakdong river barrier were analyzed. Bottom topographical changes occurred mainly in the eastern extension of the channel. These changes were initially characterized by gradual erosion or deposition followed by rapid restoration. The total volume of sediment gradually increased from June 2006 to March 2013, but experienced a sudden decrease in October 2013 because of typhoon Danas. Few fluctuations were observed from October 2013 to April 2015. Analysis of the cross-sectional bathymetry of the north-south direction showed that the deepest point of the eastern channel moved 100-130 m westward and 200 m northward between June 2006 and April 2015.